B.Tech (Electrical Engg.)

- **1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12.** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

POs

B.Tech (Electrical and Computer Science Engg.)

- **1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12.** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

POs

M.Tech-Power System Engg.

- 1. Acquire technical competence, comprehensive knowledge and understanding the methodologies and technologies of power system operation and control, principles, and practices of energy management.
- Ability to apply the knowledge of mathematics, science, engineering, and technology. Understand in detail, analyses, formulate and solve the issues pertaining to the application of power system technologies.
- **3.** Acquiring the ability to identify, investigate, understand and analyses complex problems pertaining to power management in power industries and identify effective solution strategies for implementation.
- 4. Inculcate the role of research in developing and maintaining knowledge of the state-of-the-art in various power technologies. Acquire the skill to design, develop and modify systems in hardware and software platforms to meet desired needs within realistic constraints.
- **5.** Create, select, and apply appropriate techniques, resources, modern engineering to complex engineering activities in the field of power system, control and energy management
- 6. Acquire the capacity to understand and summarize complex information pertaining to various fields of engineering in industries. Function effectively as an individual, and as a member or leader in a team
- 7. Acquire the skill to develop specifications, implement and critically assess projects and their outcomes. Demonstrate management, leadership, and entrepreneurial skills, and apply these to one's own work, as a member and a leader in a team to manage projects in multidisciplinary environments.
- **8.** Ability to communicate effectively in both oral and written contexts in the form of technical papers, project reports, design documents and seminar presentations.
- **9.** Recognize the need for, and acquire the ability to engage in self-improvement through continuous professional development and life-long learning to maintain an up-todate knowledge of contemporary issues in various fields of engineering.
- 10. Apply and commit to professional ethics and responsibilities of engineering practice. Understand the importance of sustainability and cost effectiveness in design and development of engineering solutions for Ethical Practices and Social Responsibility industries and their impacts in societal and environmental context. Demonstrate awareness of societal, safety, health, legal and cultural issues relevant to professional engineering practice.
- **11.** Impart an eagerness to conduct investigation and research on chosen field of study and thus keep moving towards being adaptive, self-reliant and self-evaluative.

POs

PEOs

B.Tech (Electrical Engg.)

- 1. Fundamental knowledge in Mathematics, Physical sciences, Electrical Sciences and Engineering
- 2. Intensive training in problem solving, practical problems, laboratory skills, and design skills.
- **3.** Specialization in specific areas of interest and excel as a professional at national and international levels
- **4.** Development of analytical and research aptitude, so as to cope up with the changes in technology through lifelong learning.
- 5. Imparting an education that includes communication skills, the ability to work in a team with leadership quality, devoted to societal problems with an ethical attitude and the ability to engage in lifelong learning

PEOs

B.Tech (Electrical and Computer Science Engg.)

- **1.** Fundamental knowledge in Mathematics, Physical sciences, Electrical Engineering and Computer Science Engineering.
- 2. Intensive training in problem solving, practical problems, laboratory skills, and design skills.
- **3.** Specialization in specific areas of interest and excel as a professional at national and international levels
- **4.** Development of analytical and research aptitude, so as to cope up with the changes in technology through lifelong learning.
- 5. Imparting an education that includes communication skills, the ability to work in a team with leadership quality, devoted to societal problems with an ethical attitude and the ability to engage in lifelong learning

M.Tech-Power System Engg.

- 1. Intensive training in problem solving, practical problems, laboratory skills, and design skills.
- **2.** Specialization in specific areas of interest and excel as a professional at national and international levels.
- **3.** Development of analytical and research aptitude, to cope up with the changes in technology through lifelong learning.
- 4. Imparting an education that includes communication skills, the ability to work in a team with leadership quality, devoted to societal problems with an ethical attitude and the ability to engage in lifelong learning

PEOs

PSOs

B.Tech (Electrical Engg.)

- **1.** Fundamental knowledge in Mathematics, Physical sciences, Electrical Sciences and Engineering
- 2. Intensive training in problem solving, practical problems, laboratory skills, and design skills.
- **3.** Specialization in specific areas of interest and excel as a professional at national and international levels
- **4.** Development of analytical and research aptitude, so as to cope up with the changes in technology through lifelong learning.
- 5. Imparting an education that includes communication skills, the ability to work in a team with leadership quality, devoted to societal problems with an ethical attitude and the ability to engage in lifelong learning

PSOs

B.Tech (Electrical and Computer Science Engg.)

- 1. Apply principles of engineering, electronics and computer science, physics, chemistry, environmental science, mathematics (including discrete mathematics, linear algebra and complex variables) and laboratory skills for erection, testing, operation and maintenance of high current electrical systems, such as, electrical machines, power and energy systems
- 2. Model, analyse, design, and realize real time systems involving components of processes related to electrical and computer science engineering systems used in industries and homes.
- **3.** Work with professional ethics in power system engineering, control systems engineering and different algorithms used in software industries
- 4. Graduates will be motivated for continuous self-learning in engineering practice and pursue research in advanced areas of Electrical and Computer Science Engineering in order to offer engineering services to the society, ethically.

PSOs

M.Tech-Power System Engg.

- **1.** Demonstrate proficiency in use of software & hardware to be required to practice Power System engineering profession.
- **2.** To critically evaluate the design and provide optimal solutions to problem areas in Power Generation Operation and Control
- **3.** To adapt to emerging control technologies to innovate ideas and solutions to existing issues in the field of power system engineering.

Effective from Session: 2022	2-23						
Course Code	PY 101	Title of the Course	Physics	L	Т	Р	С
Year	1^{st}	Semester	Ι	3	1	0	4
Pre-Requisite	10+2 with Physics and Mathematic s	Co-requisite	None				
Course Objectives			aduate course is to impart basic knowledge of fundamental og gineering knowledge base.	concep	ot of phy	vsics wh	ich

	Course Outcomes
CO1	To analyze the connection between daily life observations and science.
	To realize that apparently different ideas of Optics such as Interference and Diffraction have interrelationship between them.
	To realize the simplicity of ideas involved in explaining complex phenomenon
CO2	To grow in ideas of different aspect of light and develop connection between daily life applications and science.
	To analyze the process of development of a new theory while dealing with Polarization.
	To correlate that the conceptualization of an idea is far ahead than its practical realization while dealing with LASER.
	To grow in realization of totally different manifestation of light.
	To find the most recent applications of light in terms of communication and storage of data.
	To realize that how the design of complex systems is based on the simple ideas.
	To realize that the conceptualization of an idea is far ahead than its practical realization while dealing with Optical Fibers.
CO3	To grow in developing connection between philosophy and science.
	To find that seemingly different ideas such as Optics and Mechanics have interrelationship between them.
	To understand the process of development of a new theory and its application in life.
	To realize the requirement of power of imagination.
CO4	To grow in developing the connection between philosophy and science.
	To find that seemingly different ideas such as Compton Effect and Quantum Theory have interrelationship between them.
	To understand and analyze the process of development of a new theory and how the development of one idea leads to the development of a
	apparently different idea.
	To realize and appreciate the efforts made by the individuals to give a new understanding of science that led to the modern day applications.
CO5	To grow in developing connection between daily life utility and material science.
	To realize that apparently different materials with respect to Electric and Magnetic properties have inter relationship between them.
	To evaluate that how totally different manifestation of Modern Science leads to new technology.
	To do the evaluation that how an idea is far ahead than its practical realization while dealing with Nano Technology and Super
	Conductivity.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Wave Optics	Methods of formation of coherent sources, Fresnel's Bi-prism, displacement of fringes, thin film interference, Newton's ring. Fraunhoffer diffraction at single slit, grating, Rayleigh's criterion of resolution, resolving power of grating.	8	CO1
2	Optical Activity and Modern Optics	Production of plane polarized light by reflection and Double refraction, Nicol prism, Optical activity, polarimeter(Laurent's and Bi-quartz). Principle of fiber optics, numerical aperture, attenuation, dispersion in optical fibers, material dispersion, waveguide dispersion, intermodal and intra-modal dispersion, Pulse dispersion in step index fiber. Main components of laser, Einstein's coefficients, He-Ne laser, Nd-YAG laser and their applications.	8	CO2
3	Properties of Matter and Relativistic Mechanics	Viscosity, Poiseulli's equation, Michelson-Morley experiment and its implications, Galilean transformation equations, Lorentz transformation equations and their consequences, energy mass relation, relativistic kinetic energy.	8	CO3
4	Quantum Physics	Compton effect, basic postulates of quantum mechanics, Wave function and its physical admissibility, orthogonality of wave functions, normalization of wave functions, Heisenberg's uncertainty principle (no derivation) and its applications (non-existence of electron in nucleus, Bohr's radius), Schrodinger's equation and its application to free particle, particle in one dimensional box.	8	CO4
5	Physics of Materials	Magnetic Properties: Magnetization, Origin of magnetic moment, dia, para and ferro magnetism, Langevin's theory for diamagnetic material, Phenomena of hysteresis and its applications. Superconductors: Temperature dependence of resistivity in superconducting materials, Effect of magnetic field (Meissner effect), Temperature dependence of critical field, Type I and Type II superconductors, BCS theory (Qualitative), High temperature superconductors and Applications of Super-conductors. Nano-Materials: Basic principle of nanoscience and technology, structure, properties and uses of Fullerene and Carbon nanotubes, Applications of nanotechnology.	8	CO5
	nce Books:			
	amentals of Optics by Je			
2. Optic	al Fiber Communication	n by Gerd Keiser.		
3. Conce	epts of Modern Physics	by Arthur Beiser.		

- 4. Introduction to Special Theory of Relativity by Robert Resnick
- 5. Quantum Physics by Eisberg.
- 6. Introduction to Nanotechnology by Poole Owens, Wiley India.

7. Solid State Physics by S.O. Pillai, New Age Publications.

e-Learning Source:

1. https://nptel.ac.in/courses/115/101/115101011/

2. https://nptel.ac.in/courses/115/107/115107095/

3. https://nptel.ac.in/courses/113/106/113106093/

4. https://nptel.ac.in/courses/115/101/115101107/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01	3	3	2	1	1	3	1	3	3	2	2	3	3	3	2	3		
CO2	3	3	3	2	1	1	2	2	2	1	3	2	3	2	2	3		
CO3	3	2	1	1	2	2	3	1	3	2	1	3	2	2	2	3		
CO4	3	2	2	2	3	3	1	2	2	3	2	2	3	2	2	3		
CO5	3	1	1	1	1	2	1	1	1	1	1	2	3	2	2	3		

Effective from Session: 2020-21											
Course Code	LN101	LN101 Title of the Course Basic Professional Communication		L	Т	Р	С				
Year	I st	Semester	П	2	1	0	3				
Pre-Requisite	10+2	Co-requisite	U.G. Program								
Course Objectives	pur • The Eng • The	poses through the study key component of the glish language which is Department of Langua	the students in both the artistry and utility of the English lan of language and literature. various types of professional communication is basically con now a global language. ges caters to the needs of the students aspiring for training, e tion with a marked emphasis on English for Specific/Specia	nmuni	ication is se and o	in the excellen					

	Course Outcomes
CO1	Students will be introduced to the basic understanding of communication and Professional Communication. Knowledge of Professional,
	cultural and cross-cultural communication will be imparted. Meaning and process of communication, verbal and nonverbal communication
	will be focused.
CO2	Learning Language through literature aims to develop the students' ability to read the prescribed essays and stories critically and to understand
	the historical-political and cultural dynamics underlying them.
CO3	Basic tools of communication and improvement in communicative competence.
CO4	Understanding the structural and functional grammar and basic structure of language.
CO5	Enhancement of writing skills in English i.e., writing application, report and various types of letters.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Professional Communication	Professional Communication: Its Meaning and Importance, Essentials of Effective Communication, Barriers to Effective Communication	8	CO 1
2	8	CO 2		
3	Basic Vocabulary	Euphemism, One-word Substitution, Synonyms, Antonyms, Homophones, Idioms and Phrases, Common Mistakes, Confusable Words and Expressions, Portmanteau Words, Foreign Words and Expressions.	8	CO 3
4	Basic Grammar	Articles, Prepositions, Tenses, Concord, (Subject-Verb agreement), Modal Auxiliaries, Verbs: its Kinds and uses, Degrees of Comparison, Punctuation	8	CO 4
5	Basic Composition	Report Writing: What is report? Kinds and Objectives of reports, writing reports, Business Letter writing; Introduction to Business Letters, Layout of Business letters, Letters of Enquiry/Complaint Proposal writing	8	CO 5
	ce Books:			
		riting: Process and Product (5th edition). Prentice Hall, 2005.		
2. K. Flo	oyd, Interpersonal Comm	unication: The Whole Story. McGraw Hill, 2009.		
3. Green	baum, Sidney and Nelson	n Gerald, An Introduction to English Grammar. Routledge, 2009.		
4. Swan	, Michael, Practical Engl	ish Usage. OUP, 2005.		
5. Murp	hy, Raymond. English Gr	rammar in Use. Cambridge University Press, 2019.		
6. Kuma	r, Sanjay and Pushp Lata	., Communication Skills. Oxford University Press, Oxford 2011.		
7. Rama	n, Meenakshi, and Sange	eta Sharma. Technical Communication: Principals and Practice. Second Edition, Oxford Unive	rsity Press, 2	2012.
8. Gerso	on, Sharon J. Technical Co	communication: Process and Product (9th edition). Longman Pub., 2016.	-	
e-Lear	rning Source:			
	0	notes-professional-communication-unit-i-nas-		
2. <u>ht</u>	tps://www.docsity.com/e	n/subjects/professional-communication/		

2. https://www.docsity.com/en/subjects/professional-communication/

3. <u>https://lecturenotes.in/download/note/22690-note-for-communication-skills-for-profession...</u>

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Teaching and methods	Learning	Flipped Classrooms, Concept Mapping, Information-Based Approach, Personal-Response Approach, Language-Based Approach, Paraphrastic Approach, Moral-Philosophical Approach and Stylistics Approach
List/Topics/Activitie that are beyond Syl		Information-Based Activities, Personal-Response Activities, Language-Based Activities, Periphrastic Activities, Moral-Philosophical Activities, and Stylistics Activities

Effective from Session: 2015-16											
Course Code	MT101	Title of the Course	Mathematics I	L	Т	Р	С				
Year	1 st	Semester	1 st	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	The course is aimed to develop the skills in mathematics which is necessary for grooming them into successful										

	Course Outcomes
CO1	Able to calculate rank of matrix, characteristic equation & characteristic roots & use the applicability of Cay lay Hamilton Theorem to find
	inverse of matrix which is very important in many engineering application.
CO2	To develop ability to solve higher derivative, expansion of functions in ascending power of variable & partial derivatives.
CO3	Develops ability to solve Jacobian, error and approximation and Extrema of the function.
CO4	Learn the evaluation policy of some special function like gamma & Beta function. & their relation which is helpful to evaluate some definite
	integral arising in various branch of Engineering.
CO5	Able to determine vector differentiation and integration.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Differential Equations	Linear differential equations of first order, Linear differential equations of higher order with constant coefficients, Complementary functions and particular integrals, Simultaneous linear differential equations, Solution of second order differential equations by changing dependent and independent variables, Method of variation of parameters, Applications to engineering problems (without derivation).	8	CO1
2	Laplace Transform	Laplace transform, Existence theorem, Laplace transform of derivatives and integrals, Unit stepfunction, Dirac-delta function, Laplace transform of periodic functions, Inverse Laplace transform, Convolutiontheorem, Applications to solve simple linear and simultaneous differential equations.	8	CO2
3	Fourier Series and Partial Differential Equations	Periodic functions, trigonometric series, Fourier series of period 2 π , Euler's formulae, functions havingarbitrary period, change of interval, Even and odd functions, Half range sine and cosine series. Introduction of partial differential equations, linear partial differential equations with constant coefficients of second order and their classifications to parabolic, 9 elliptic and hyperbolic forms with illustrative examples.	9	CO3
4	Applications of Partial Differential Equations	Method of separation of variables for solving partial differential equations, Wave equation up to two-dimensions, Laplace equation in two-dimensions, Heat conduction equations up to two dimensions, Equations of transmissionLines.	8	CO4
5	Basic Statistics and curve fitting	Mean, Median, Mode, Standard deviation and Variance, Method of least squares, Curvefitting of straight line and parabola.	7	CO5
Referen	ce Books:			
1. E. Kre	eyszig Advanced Engine	eering Mathematics, Wiley Eastern Ltd.		
2. Jaggi	and Mathur Advanced H	Engineering Mathematics, Khanna Publication.		
3. B. S. 0	Grewal Higher Engineer	ring Mathematics, Khanna Publication.		
4. Denni	s G. Zill Advanced Eng	ineering Mathematics, CBS Publication.		
e-Lear	ming Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session:												
Course Code	PY102 / PY104	Title of the Course	Physics Lab	L	Т	Р	С					
Year	1 st	Semester	1 st	0	0	6						
Pre-Requisite	10+2 with Physics and Mathematic s	Co-requisite										
Course Objectives	· ·	The purpose of this undergraduate course is to impart practical knowledge of the concepts through different experiments related to its theoretical course.										

	Course Outcomes
CO1	To demonstrate how interference takes place by division of amplitude and by division of wavefront.
CO2	To demonstrate the practical applications of polarization phenomenon in finding the specific rotation, refractive index and Brewster's
	angle.
CO3	To demonstrate the practical application of Fraunhoffer diffraction in wavelength and focal length calculation.
CO4	To demonstrate the magnetic and heating effect of current in finding the magnetic field and Stefan's constant.
CO5	To demonstrate how to calculate the energy band gap of a semiconductor material and viscosity of a liquid.

List of experiments	Content of Unit
Exp.1	To determine the wave length of monochromatic light by Newton's ring.
Exp.2	To determine the wave length of monochromatic light with the help of Fresnel's Biprism.
Exp.3	To determine the focal length of two lenses by nodal slide and locate the position of cardinal points.
Exp.4	To determine the specific rotation of cane sugar solution using Half Shade polarimeter.
Exp.5	To determine the wavelength of spectral lines using plane transmission grating.
Exp.6	To determine the Brewster's angle and refractive index of material with the help of a laser source.
Exp.7	To determine the variation of magnetic field along the axis of a current carrying coil and then to estimate the radius of the coil.
Exp.8	To verify Stefan's law by electrical method.
Exp.9	To determine the energy band gap of a given semiconductor material.
Exp.10	To determine the coefficient of viscosity of a liquid.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	3	1	3	-	-	-	-	-	2	1	1	3	-	-
CO2	2	2	2	2	2	3	2	-	-	-	-	-	2	1	1	3	-	-
CO3	3	3	1	3	3	1	3	-	-	-	-	-	2	1	1	3	-	-
CO4	2	2	2	3	1	2	2	-	-	-	-	-	2	1	1	3	-	-
CO5	2	1	1	1	2	2	2	-	-	-	-	-	2	1	1	3	-	-

Effective from Session: 2017	7-18						
Course Code	EE104	Title of the Course	Electrical Engineering Lab	L	Т	Р	С
Year	Ι	Semester	I/II	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	To undeTo unde	rstand and experiment v rstand and experiment v	with the verification of DC Network Theorems with the study of diode, rectifier, BJT characteristics and with the study of resonance and determination of transf with the calibration of energy meter and operation of in	ormer	losses	r	

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of verification of DC Network Theorems; contribute in related development
CO2	Adopt, perform, analyze and implement the methods of study of diode, rectifier, BJT characteristics and Amplifier; contribute in related
	development
CO3	Adopt, perform, analyze and implement the methods of study of resonance and determination of transformer losses; contribute in related
	development
CO4	Adopt, perform, analyze and implement the methods of calibration of energy meter and operation of induction motor; contribute in related
	development

Unit No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1.		Verification of Thevenin's Theorem.	2	1
2.		Verification of Superposition Theorem.	2	1
3.		Verification of Maximum Power Transfer Theorem.	2	1
4.		To study V-I characteristics of diode.	2	2
5.		To study the input & output characteristics of BJT in CE configuration.	2	2
6.		To study the full wave rectifier circuit with & without filter and determine the ripple factor.	2	2
7.		To study the phenomenon of resonance in series RLC circuit.	2	3
8.		Determination of losses in single phase transformer by OCT and SCT.	2	3
9.		To calibrate a single-phase induction type energy meter.	2	4
10.		To study the running and reversing of a three phase SCIM.	2	4
11.		Study of OP Amp based inverting and non-inverting amplifier	2	2
	ce Books:			
	· •	ectrical Engg." PHI, 2009.		
2. M.A N	Mallick, Dr. I. Ashraf	, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
3. A. Hu	ssain, "Basic Electric	al Engg" Dhanpat Rai & sons, 2007.		
4. R. Bo	ylestad, "Electronic I	Devices and Circuit Theory", Pearson, 2013.		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	1	3						3	3	3	2	3
CO2	3	3	3	2	1	1						2	3	2	1	3
CO3	3	2	1	1	2	2	3					3	3	3	2	3
CO4	3	2	2	2	3	3						2	3	2	2	3

Effective from Session: 2015	5-16						
Course Code	ME103	Title of the Course	ENGINEERING GRAPHICS	L	Т	Р	С
Year	Ι	Semester	I/II	0	0	2	1
Pre-Requisite	None	Co-requisite	None				
Course Objectives	This coTo under	urse enhances visualizaterstand techniques of dr	undamentals of Engineering Graphics. tion skill and imagination power. awings for various fields of engineering munication skill in the form of communicative drawings.				

	Course Outcomes
CO1	Describe the fundamentals of engineering drawing, use of geometrical instruments and drawing steps
CO2	To understand the concept of projection and acquire visualization skills, draw the projection of points, lines and planes.
CO3	Classify solids and projection of solids at different positions
CO4	To get the exact sectioned view of solids and development of their surfaces.
CO5	To draw isometric projection and perspective views of an object.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Lettering and geometrical constructions	Describe the fundamentals of engineering drawing, use of geometrical instruments and layout for initial drawing.	2	CO1
2	Orthographic projections of points	Describe the fundamentals orthographic projections and use of geometrical instruments and layout for initial drawing.	2	CO2
3	Projections of lines	Describe the fundamentals of projections of lines and use of geometrical instruments and procedure for the drawing.	2	CO2
4	Projections of solids	Describe the fundamentals of projections of solids and use of geometrical instruments and procedure for the drawing.	2	CO3
5	Sectioning of solids	Describe the fundamentals of sectioning of solids and use of geometrical instruments and procedure for the drawing.	2	CO4, CO3
6	Isometric Projections	Describe the fundamentals of Isometric projections and use of geometrical instruments and procedure for the drawing.	2	CO5
7	Production drawing	Describe the fundamentals of production drawing.	2	CO1, CO2
Referen	ce Books:			
Engine	ering graphics by Prade	ep Jain		
Engine	ering graphics by Kruna	al Patel		

e-Learning Source:

https://www.youtube.com/watch?v=p62LPzFqGQw&list=PLp6ek2hDcoNCjoRLQ4rjpCozisCACBxKA https://www.youtube.com/watch?v=VrU73IwRyc4&list=PLLy_2iUCG87Bw9XPfEF3r3EW5UlAOv8iz

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	101	105	100	10,	100	10)	1010	1011	1012	1501	1502	1505
CO1	3								1	2		3	3		3
CO2	3	2	2						1	2		3	3		3
CO3	3	2	2						1	2		3	3		3
CO4	3	2	2						1	2		3	3		3
CO5	3	2	2						1	2		3	3		3

Effective from Session: 2015	5-16						
Course Code	ME104	Title of the Course	WORKSHOP PRACTICE	L	Т	Р	С
Year	Ι	Semester	I / II	0	0	2	1
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To impate To i	rt practical knowledge o rt basic knowledge of sn rt basic knowledge of joints.	nd hands-on practice on the lathe machine. f basic tools and operations in the fitting shop and carpentry nithy tools and hands-on practice in smithy shop. different welding tools and equipment and hands-on prac- ge of different types of sheet metal tools and equipments a	ctice o	f makiı	0	

	Course Outcomes						
CO1	Perform different operations on lathe machine.						
CO2	02 Manufacture components using tools and equipments of fitting shop and carpentry shop.						
CO3	O3 Make components in smithy shop using different types of smithy tools and equipments.						
CO4	Perform different joining operations using welding tools and equipments.						
CO5	Make sheet metal components using different sheet metal tools and equipments.						

Exper iment No.	Title of the experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Lathe machine	To study and sketch a lathe machine	2	CO1
1	Latite machine	Practice of operations - facing, plain turning, step turning, Taper turning & chamfering	2	COI
		To study and sketch fitting tools and equipment		
		Practice of step cutting, filing, drilling & tapping		
2	Fitting shop &	To make a 90° v-groove fitting on mild steel flat	2	CO2
2	carpentry shop	To study and sketch different types of carpentry tools & machines	2	02
		To make a mortise and tenon joint		
		To make a corner lap joint		
		To study and sketch different smithy tools & equipments		
3	Smithy shop	To make a squire punch from mild steel round rod	2	CO3
		To make a pipe hook from a mild steel round rod		
		To study and sketch the welding equipments and tools		
4	Welding shop	To weld the two given plates & make a lap joint(by arc welding)	2	CO4
		To weld the two given plates & make a butt joint (by arc welding)		
		To study and sketch different sheet metal tools & equipments		
5	Sheet metal	To make a rectangular tray	2	CO5
		To make a conical funnel		
e-Lear	ning Source:	·		

https://www.vlab.co.in/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4
CO1	3	2	2	3	3	2			2		2	3	3	2	3
CO2	3	2	2	2	2	2			2		2	3	3	2	3
CO3	2	2	2	2	2	2			2		2	3	3	2	3
CO4	2	2	2	2	3	2			2		2	3	3	2	3
CO5	2	2	2	2	2	2			2		2	3	3	2	3

Effective from Session: 2015	5-16						
Course Code	CH101	Title of the Course	Chemistry	L	Т	Р	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives		e core is aimed to develo duate.	op the skills in Chemistry which is necessary for grooming	shes in	casal e	engineer	ring
	• The	topics introduced will	serve as basic tools for specialized studies in science field.				

	Course Outcomes
CC	Analyze and compare magnetic behavior and stability of heteronuclear diatomic molecules, Significance of hydrogen bonding band theory, radius ratio, density of unit cell, fullerenes and graphite
CC	Comprehension of types of polymers to make an appropriate choice of use of polymers (Natural, synthetic and biodegradable)
CC	Compare reaction intermediates and mechanism of chemical reactions and isomerism.
CC	Interpret phase rule, phase diagram, corrosion and its prevention, calculation of activation energy, rate constant, half-life period, emf of electrochemical cells, construction and operation of galvanic cell and concentration cells.
CC	Determination of calorific value, analyzing water softening methods, principles, instrumentations of UV, IR and NMR spectroscopy and their applications.

1 Molecular theory of hetero diatomic molecules, Band theory of bonding in metals, Hydrogen bonding. Solid state chemistry: Radius ratio rule, Space lattice (only cubes), Types of Unit, cells, Brag's law, calculation of density of unit cell. One and Two Dimensional solid, Graphite as two dimensional solid and its conducting and lubricating properties. Fullerene and its applications. 8 CO1 2 Polymers: Polymers: (Buna-S, Buna-N, thiokols, polymethanes, silicons), Polyamides (Nylon-6, Nylon-6, Kylon-6, Kylon-6, Nylon-6, Nylon-6, Nylon-1, Nylon-11, Kvelar), Polyesters (Terelene), Polyacrylates (PMMA, PAN, PVC). Organic conducting and biodegradable polymers. 8 CO2 3 Structural and mechanistic concepts in organic reactions, mechanism of nucleophilic substitutionreactions. Mechanism of the following name reactions. 8 CO3 4 Reaction kinetics, Phase rule, Phase rule, Phase rule, Eterochemistry and Ororsoin. Order and molecularity of reaction. First and second order reactions. Energy of activation. First and second order reactions. Energy of activation. Phase rule, electrochemistry and corrosoin. 8 CO4 5 Analytical methods, Fuel and Water treatment of spectroscopic methods. The use of UV, Visible, IR, HNMR, for the determination of spectroscopic methods. The use of UV, Visible, IR, HNMR, for the determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water, Structure and mechanistry of spectroscopic methods. The use of UV, Visible, IR, HNMR, for the determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water, streatment of boiler feed wate	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
2 Polymers: (Buna-S, Buna-N, thiokols, polyurethanes, silicons), Polyamides (Nylon-6, Nylon-66, Nylon-6, 10, Nylon-11, Kevlar), Polyesters (Terelene), Polyacrylates (PMMA, PAN, PVC). Organic conducting and biodegradable polymers. 3 Structural and mechanistic concepts in organics: Stability of reaction intermediates, e.g. Carbanions, Carbocations and free radicals. Types of organic reactions, mechanism of nucleophilic substitutionreactions. Mechanism of the following name reactions. 8 CO3 4 Reaction kinetics, Phase rule, Electrochemistry and Corrosion. Order and molecularity of reactions. First and second order reactions. Energy ofactivation. 8 CO4 5 Analytical methods, Fuel and Water treatment: Basic principles of spectroscopic methods. The use of UV, Visible, IR, 1HNMR, for the determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water by Line-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis. Treatment of boiler feed water by Calgon process. 8 CO5 Reference Books: I Jain P. C. and Jain M. 1994. Engineering Chemistry. Danpat Rai publishing company Pvt. Ltd., Delhi. Sc. Arun Bahl and Tuli B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi. Sc. Arun Sc. Aru	1	and state of	bonding. Solid state chemistry: Radius ratio rule, Space lattice (only cubes), Types of Unit cells, Bragg's law, calculation of density of unit cell. One and Two Dimensional solids, Graphite as two dimensional solid and its conducting and lubricating properties. Fullerene and	8	CO1
3 Structural and mechanistic concepts in organic reactions, mechanism of nucleophilic substitutionreactions. Mechanism of the following name reactions. i. Aldolcondensation ii. Cannizzaro reactioniii. Beckmann rearrangement iv. Hofmann rearrangement and v. Diels-Alderreaction E-Z Nomenclature. R.S configuration, Optical isomerism of organic compounds containing one chiral center. Examples of optically active compounds without chirality. Conformations of n-butane. 4 Reaction kinetics, Phase rule, Electrochemistry and Corrosion: Order and molecularity of reactions. First and second order reactions. Energy ofactivation. Phase Rule, its application to one component system(water). Equilibrium potential, electrochemical cells (galvanic and concentrationcells) Electrochemical theory of corrosion and protection of structure of simple organic compounds. Classification of fuels, determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water by Lime-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis. Treatment of boiler feed water by Calgon process. Refere: I. Jain P. C. and Jain M. 1994. Engineering Chemistry. Danpat Rai publishing company Pvt. Ltd., Delhi. Z. Bahl B.S, Arun Bahl and Tui B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi.	2	Polymers:	(Buna-S, Buna-N, thiokols, polyurethanes, silicons), Polyamides (Nylon-6, Nylon-6,6, Nylon-6,10, Nylon-11, Kevlar), Polyesters (Terelene), Polyacrylates (PMMA, PAN, PVC). Organic	8	CO2
4Phase rule, Electrochemistry and Corrosion:Phase Rule, its application to one component system(water). Equilibrium potential, electrochemical cells (galvanic and concentrationcells) Electrochemical theory of corrosion and protection of corrosion.Section (Concentration)5Analytical methods, Fuel and Water treatment:Basic principles of spectroscopic methods. The use of UV, Visible, IR, 1HNMR, for the determination of structure of simple organic compounds. Classification of fuels, determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water by Lime-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis. 	3	mechanistic concepts in	 Stability of reaction intermediates, e.g. Carbanions, Carbocations and free radicals. Types of organic reactions, mechanism of nucleophilic substitutionreactions. Mechanism of the following name reactions. i. Aldolcondensation ii. Cannizzaro reactioniii. Beckmann rearrangement iv. Hofmann rearrangement and v. Diels-Alderreaction E-Z Nomenclature. R.S configuration, Optical isomerism of organic compounds containing one chiral center. Examples of optically active compounds without chirality. Conformations 	8	CO3
Analytical determination of structure of simple organic compounds. Classification of fuels, determination 5 Methods, Fuel and of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water treatment: water by Lime-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis. Reference For and Jain M. 1994. Engineering Chemistry. Danpat Rai publishing company Pvt. Ltd., Delhi. 2. Bahl B.S, Arun Bahl and Tuli B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi.	4	Phase rule, Electrochemistry	Phase Rule, its application to one component system(water). Equilibrium potential, electrochemical cells (galvanic and concentrationcells) Electrochemical theory of corrosion	8	CO4
 Jain P. C. and Jain M. 1994. Engineering Chemistry. Danpat Rai publishing company Pvt. Ltd., Delhi. Bahl B.S, Arun Bahl and Tuli B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi. 	5	methods, Fuel and	determination of structure of simple organic compounds. Classification of fuels, determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water by Lime-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis.	8	CO5
2. Bahl B.S, Arun Bahl and Tuli B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi.					
3. Industrial Chemistry B.K Sharma, Goel publishing house.					
	3. Indus	trial Chemistry B.K Sha	rma, Goel publishing house.		

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session: 2015	5-16						
Course Code	ES101	Title of the Course	Environmental Studies	L	Т	Р	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Thi Aft 	s will help students in e	aduate course is to impart basic and key knowledge of envir nhancing their knowledge of biodiversity and its conservation of course, the student will able to explore concept of the su	n.		•	

	Course Outcomes
CO1	Gain knowledge about environment and ECOsystem.
CO2	Students will learn about natural resource, its importance and environmental impacts of human activities on natural resource.
CO3	Gain knowledge about the conservation of biodiversity and its importance.
CO4	Aware students about problems of environmental pollution, its impact on human and eCOsystem and control measures.
CO5	Students will learn about increase in population growth and its impact on environment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Environment and ECOsystems	Environment, its components and segments, Multidisciplinary nature of Environmental studies, Concept of Sustainability and sustainable development, Environmental movements, ECOsystem, Structure & Function, Energy flow in the ECOsystem, Ecological Pyramids and Ecological Succession.	8	CO1
2	Natural Resources	Renewable and non renewable, Soil erosion and desertification, Deforestation, Water: Use and over exploitation, Impacts of large Dams, Case studies.	8	CO2
3	Biodiversity and Conservation	Levels of biological diversity, Hot spots of biodiversity, India as a Mega Diversity Nation, Endangered and endemic species of India, Threats to Biodiversity, Conservation of Biodiversity, ECOsystem and biodiversity services.	8	CO3
4	Environmental Pollution, Policies and Practices	Environmental pollution, Solid waste management, Ill effects of fireworks, Climate change, Ozone layer depletion, acid rain and impacts on human communities and Environment, Environmental Laws: Environment Protection Act, Wildlife protection Act, Forest conservation Act, Convention on Biological Diversity (CBD), Tribal rights, Human wildlife conflicts.	8	CO4
5	Human Population and the Environment	Human population growth: Impacts on environment, human health and welfare, Resettlement and rehabilitation of project affected persons, Environmental ethics, Environmental communication and public awareness, case studies.	8	CO5
Referen	ce Books:			
1.Agarw	al, K.C. 2001 Environm	nental; Biology, Nidi Pub. Ltd. Bikaner		
2. Bharu	cha Erach, The Biodive	rsity of India, Mapin Pub. Pvt. Ltd., Ahemdabad-380, India		
3. Brunn	er R.C. 1989. Hazardou	is waste incineration, Mc Graw Hill		
4. Clark	R.S. Marine Pollution,	Clanderon Press Oxford (TB)		
5. Cunni	ngham W.P.2001.Coop	er, T.H. Gorhani, E & Hepworth, Environmental encyclopedia, Jaicob Publication House, Mumb	oai.	
6. De. A	.K. Environmental chen	nistry Willey Eastern Limited.		
7. Glick,	H.P.1993 water in crisi	s, Pacific Institute for studies in dev, Environment & security, Stockholm Env, Institute, Oxford	Univ, Press	473 p.
8. Hawk	ins R .E. Encyclopedia	of Indian Natural History, Bombay Natural History Society, Bombay.		
9. Heyw	ood, V.H. & Watson, R	. T.1995.Global biodiversity Assessment .Cambridge Univ. Press 1140 p.		
10. Jadha	ave, H. and Bhosale, V.	M. 1995 Environmental protection and laws, Himalaya pub, house, Delhi.284 p.		
11. Mcki	innery, M.L. and Schoo	l, R. M.1996 Environmental science systems and solutions, web enhanced edition 639 p.		
12. Mha	skar A.K. Matter Hazar	dous, Techno Science Pub (TM)		
13. Mille	er T.G. Jr, Environment	al Ecology, W. B. Saunders Co.USA,574 p. 16		
14. Odur	n, E.P.1997.Fundament	al chemistry, Goel Pub House Meerut.		
15. Surv	ey of the Environment,	The Hindu (M).		
16. Shar	ma B.K.2001.Environm	ental Chemistry, Goel Pub .House Meerut		
e-Lear	ning Source:			

						Co	ourse A	Articul	ation N	Aatrix: ((Mappi	ng of CO	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session: 2015	5-16						
Course Code	MT112	Title of the Course	Mathematics II	L	Т	Р	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	eng	ineering graduate.	elop the skills in mathematics which is necessary for groom serve as basic tools for specializedstudies in science field	ing th	em into	succes	sful

	Course Outcomes
CO1	Solve first order linear equations and higher order differential equation of certain types and interpret the solutions.
CO2	To use shift theorems to compute the Laplace transform, inverse Laplace transform and the solutions of second order, linear equations with constant coefficients.
CO3	Able to determine given function in terms of sine and cosine terms in Fourier series.
CO4	Apply problem-solving using concepts and techniques from PDE'S and Fourier analysis applied todiverse situations in physics, engineering,
	financial mathematics and in other mathematical contexts.
CO5	Apply method of least squares to find the curve of best fit for the given data

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Differential Equations	Linear differential equations of first order, Linear differential equations of higher order with constant coefficients, Complementary functions and particular integrals, Simultaneous linear differential equations, Solution ofsecond order differential equations by changing dependent and independent variables, Method of variation ofparameters, Applications to engineering problems (without derivation).	8	CO1
2	Laplace Transform	Laplace transform, Existence theorem. Laplace transform of derivatives and integrals, Unit stepfunction, Dirac-delta function, Laplace transform of periodic functions, Inverse Laplace transform, Convolutiontheorem, Applications to solve simple linear and simultaneous differential equations.	8	CO2
3	Fourier Series and Partial Differential Equations	Periodic functions, trigonometric series, Fourier series of period 2 n. Euler's formulac, functions havingarbitrary period, change of interval, Even and odd functions, Half range sine and cosine series. Introduction of partial differential equations, linear partial differential equations with constant coefficients of second order and their classifications to parabolic, elliptic and hyperbolic forms with illustrative examples.	8	CO3
4	Applications of Partial Differential Equations	Method of separation of variables for solving partial differential equations, Wave equation up to two-dimensions, Laplace equation in two-dimensions, Heat conduction equations up to two dimensions, Equations of transmissionLines.	8	CO4
5	Curve fitting and Solution of Equations	Method of least squares, curve fitting of straight line and parabola, Solution of cubic and biquadratic equations.	8	CO5
Referen	ce Books:			
1. E. Kre	eyszig Advanced Engine	eering Mathematics, Wiley Eastern Ltd.		
2. Jaggi	and Mathur Advanced H	Engineering Mathematics, Khanna Pub.		
3. B. S.	Grewal Higher Engineer	ring Mathematics, Khanna Pub.		
4. Denni	is G. Zill Advanced Eng	ineering Mathematics, CBS Pub.		
e-Lear	rning Source:			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PS	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session: 2015	5-16						
Course Code	ME101	Title of the Course	Basic Mechanical Engg.	L	Т	Р	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	of t • To • Be • Be bea	hermodynamics. understand and apply fin able to model the proble able to draw Shear Force ms.	oncepts of thermal sciences and temperature measurement of rst and second law of thermodynamics to various processes a em using free-body diagrams and reach to solution by using e Diagram (SFD) and Bending Moment Diagrams (BMD) for omponents on the basis of knowledge of stress, strain and str	and rea equilil r statis	al syste orium e tically o	ms. quation letermin	s.

	Course Outcomes
CO1	Explain basic concepts of thermal sciences and temperature measurement on the basis of zeroth law of thermodynamics.
CO2	Understand and apply first and second law of thermodynamics to various processes and real systems.
CO3	Model the problem using freebody diagrams and reach to solution by using equilibrium equations.
CO4	Draw Shear Force Diagram (SFD) and Bending Moment Diagrams (BMD) for statistically determinate beams.
CO5	D esign simple components on the basis of knowledge of stress, strain and strength of material.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	FUNDAMENTAL S OF THERMODYNA MICS	Fundamental Concepts and Definitions: Definition of Thermodynamics, System, surrounding and universe, Phase, Concept of continuum, Macroscopic & microscopic point of view. Density, Specific volume, Pressure, temperature. Thermodynamic equilibrium, Property, State, Path, process, Cyclic process, Energy and its form, Work and heat, Enthalpy.Laws of thermodynamics: Zeroth law: Concepts of Temperature, Zeroth law.	8	CO1
2	FIRST LAW &SECOND LAW	First law: First law of thermodynamics. Concept of processes, Flow processes and control volume, Flow work. Steady flow energy equation, Mechanical work in a steady flow of process. Second law: Essence of second law. Thermal reservoir, Heat engines, COP of heatpump and refrigerator Statements of second law, Carnot cycle, Clausius inequality.	8	CO2
3	MECHANICS AND STRENGTH OF MATERIALS	Force system and Analysis: Basic Concept: Laws of motion. Transfer of force to parallel position. Resultant of planer force system Free Body diagrams, equilibrium and its equation. Friction: Introduction, Laws of Coulomb friction, Equilibrium of bodies involving dry friction, belt friction.	8	CO3
4	STRUCTURE ANALYSIS	Beams: Introduction, Shear force and bending moment, Shear and bending moment diagram for staticallydeterminate beams.	8	CO4
5	STRESS AND STRAIN ANALYSIS	Simple Stress and strain: Introduction, Normal, shear stresses, Stress-strain diagrams for ductile andbrittle materials. Pure Bending of Beams: Introduction, Simple bending theory.	8	CO5
	ce Books:	E Endemondele of Classical Thermodynamics John Wiley & Case Jac NW		
		E. Fundamentals of Classical Thermodynamics, John Wiley & Sons, Inc. NY. mics (2nd edition) Mc Graw Hill Book Co. NY.		
	5	es, Mc Graw Hill Book Co.NY.		
	es LH, Engineering Med			
		ineering, S.K. Katarial& Sons.		
6. Bhavi	Katti S.S. Engineering	Mechanics, New Age Pub,		
7. P.K. I	Bharti: Engineering Mec	chanics, Kataria and Sons.		
8. R.K. I	Rajput, Mechanical Eng	ineering. Laxmi Pub		
e-Lear	rning Source:			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PS	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО																		
CO1	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session: 2015	5-16						
Course Code	CS101	Title of the Course	Computer Programming	L	Т	Р	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To To 	provide fundamental co show the use of function study the implementation	puters, networks, algorithms & flowcharts. ncepts of programming language "C". as and pointers to different problems on of arrays, matrices and strings. efined data types structure & union.				

	Course Outcomes
CO1	Understand basic concepts of computer, networks and formulation of algorithmic solutions to problems.
CO2	Understanding of programming concepts of C language and their implementation.
CO3	Analyze and develop programs on pointers and functions.
CO4	Develop programs on different operations on arrays, matrices & strings.
CO5	Implement programs on structure, union & Dynamic memory allocation.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Computers	Generation of computers, Characteristic and classifications of computers. Components of Computer: CPU, Various I/O Devices, Memory & its types, (Memory Hierarchy, Storage Media), Computer Software and their types, Operating System. Computer Networks & Communication: LAN, MAN, WAN, Network Topologies, Modes of Data Communication. Introduction to Internet and its Safeguard: Internet Addresses, Domain Name System, URL, Web Browsers Search Engines, Firewalls, Anti-Virus, Translators. Algorithm and flowchart: Algorithm and flow chart characteristics, Sketching Flowcharts of various problems.	8	CO1
2	Starting C	Standard I/O in 'C', 'C' Fundamental, C Character set, Constants, Variables, Keywords and Identifiers, Data types. Declaration. Operators and Expressions. Conditional statements (If, If- else), Nesting of if- else statement, switch statement, The? operator, goto statement. Decision making and Looping (While, Do-While, for). Break and Continue statements, Case Control Structures (Switch), C programs based on above concepts.	8	CO2
3	Introduction to pointers	Declaration and initialization of pointers, accessing the address of the variable, accessing the variable through the pointer, chain of pointers, pointers operators, pointer arithmetic Introduction to Functions: Need of "C" function, User Defined and Library Functions, Prototype of Function, Call by Value; Call by Reference; Nesting of Functions, Recursion. Pointers with function, C program based on above concept.	8	CO3
4	Array	Concept of One Dimensional and Multi-Dimensional arrays, Declaration, Operations: insert, delete, search, traverse, and merge, matrix operations, Sorting: Bubble sort, merge sort, insertion sort. Character array and strings: declaring and initializing strings variable, reading and writing a character, reading and writing strings from terminal, Arithmetic operations on characters, string handling functions. Application of pointers, and function on array, C program based on above concept.	8	CO4
5	Structures	Defining Structure, Declaration of Structure Variable, Accessing Structure members, copying and comparing structure variable, operation on individual member, nesting of structures, Array of structures. Application of pointers and function on Structures. Union Defining Union Declaration of Union, difference between structure and Union, Introduction of Static and Dynamic memory allocation- The process of Dynamic memory allocation, C program based on above concept.	8	CO5
	nce Books:			
		echnology by 'D.S. Yadav'- New age International		
Ũ	e .	agurusamyTMH Publication.		
	s 'C' by 'YashwantKanit			
4. The C	Programming Essentia	als by Dey- Pearson Publication.		
e-Lea	rning Source:			
e Lea	ing our co.			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO CO1	3	3	2	1	1	3						3	3	3	2	3		
CO2	3	3	3	2	1	1						2	3	2	2	3		
CO3	3	2	1	1	2	2	3					3	2	2	2	3		
CO4	3	2	2	2	3	3						2	3	2	2	3		
CO5	3	1	1	1	1	2	1					2	3	2	2	3		

Effective from Session: 2019	9-20						
Course Code	CH102	Title of the Course	Engineering Chemistry Lab	L	Т	Р	С
Year	First	Semester	II	0	0	2	2
Pre-Requisite	10 + 2 with Chemistry	Co-requisite					
Course Objectives	Improvement oAbility to work of	qualitative and quantitati f practical/technical skills effectively and safely in a munication skill.	•				

	Course Outcomes
CO1	Analysis of iron ore.
CO2	Study of water quality parameters.
CO3	Study of Iodometric titration.
CO4	Comprehension of principle, instrumentation and use of UV-VIS spectrophotometer and pH meter.
CO5	Detection of functional groups and elements in organic compounds.

Unit No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Iron content	To determine the Iron content in the given iron ore by using external indicator.	2	1
2	Alkalinity	To determine the Alkalinity in the given water sample.	2	2
3	Chloride content	To determine the Chloride content in the given water sample by Mohr's method. (Argentometric method).	2	2
4	Available chlorine	To determine the Percentage of Available Chlorine in the given sample of Bleaching powder iodometrically.	2	3
5	Hardness	To determine the temporary and permanent hardness in water sample by Complexometric titration using EDTA as standard solution.	2	2
6	Chemical displacement	To determine the Equivalent weight of Iron by Chemical Displacement method. (The Equivalent weight of copper is 63.5)	2	3
7	pH metric determination	To determine the strength of given HCl solution by titrating it against NaOH solution using pH meter.	2	4
8	Spectrophotometri c measurement	To determine the iron concentration in the given water sample by Spectrophotometer using potassium thiocyanate as color developing agent.	2	4
9	Functional group detection	To detect the presence of functional groups in the given organic compound.	2	5
10	Elements detection	To detect the presence of Elements in the given organic compound.	2	5
Refere	ence Books:			
Fundar	mentals of Chemistry wi	th Quantitative analysis-I, R.L. Madan., S.Chand Publications		
Advan	ce Practical Chemistry:	Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, PragatiEdition.		
Practic	al Organic Chemistry, A	A.I.Vogel.		

e-Learning Source:

https://www.bing.com/videos/search?q=functinal+group+detection&&view=detail&mid=F232CD67537BBA0CC3EBF232CD67537BBA0CC3EB&& FORM=VRDGAR&ru=%2Fvideos%2Fsearch%3Fq%3Dfunctinal%2520group%2520detection%26qs%3Dn%26form%3DQBVR%26%3D%2525eManage

https://www.bing.com/videos/search?q=alkalinility+of+water+sample&qpvt=alkalinility+of+water+sample&view=detail&mid=7AF6506DB69D2C2F3EA3A&FORM=VRDGAR&ru=%2Fvideos%2Fsearch%3Fq%

https://www.bing.com/videos/search?q=iodometric+titration&qpvt=Iodometric+titration&FORM=VDRE

					Course	Articulat	ion Mat	rix: (Maj	pping of	COs with	h POs an	d PSOs)				
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2	-	-	-	-	2	1	2	2	-	2	3	1	-	-
CO2	3	2	2	-	-	-	2	1	2	2	-	2	3	3	-	1
CO3	3	2	-	-	-	-	2	1	2	2	-	2	3	2	-	-
CO4	3	2	-	2	1	-	2	1	2	2	-	2	3	2	-	-
CO5	3	2	-	-	-	-	2	1	2	2	-	2	3	-	-	-

Effective from Session: 2015	5-16						
Course Code	ME102	Title of the Course	MECHANICAL ENGINEERING LAB	L	Т	Р	С
Year			Π	0	0	2	1
Pre-Requisite	NONE	Co-requisite	NONE				
Course Objectives	their r • To un throug • To un • To lea	nodels. derstand the working an th model study. derstand basic compone rn the technique for dete	d basic components of 4 stroke petrol engine and 4 stroke Die and basic components of 2 stroke petrol and vapor compress ints and working of water tube boiler through model study. ermine of hardness and impact strength of a material. ermine of compressive strength of a brick through UTM.			U U	

	Course Outcomes							
CO1	To understand the working and basic components of 4 stroke petrol engine and 4 stroke Diesel engine through study their models.							
CO2	CO2 To understand the working and basic components of 2 stroke petrol and vapor compression refrigeration system through model study							
CO3	O3 To understand basic components and working of water tube boiler through model study.							
CO4	CO4 To learn the technique for determine of hardness and impact strength of a material.							
CO5	To learn the technique for determine of compressive strength of a brick through UTM.							

Exper iment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Four Stroke Petrol Engine	To Study & Sketch the model of S.I. Engine (4 Stroke)	2	CO1
2	Four Stroke Diesel Engine	To Study & Sketch the model of C.I. Engine (4 Stroke).	2	CO1
3	Two Stroke Petrol Engine	To Study & Sketch the model of S.I. Engine (2 Stroke)	2	CO2
4	Vapor Compression	To Study & Sketch the model of Vapor Compression Refrigerators	2	CO2
5	Water Tube Boiler	To Study & Sketch the model of water tube boiler (Babcock & Wilcox)	2	CO3
6	Impact Testing	To determine the Impact Strength of Mild Steel using Izod Method	2	CO4
7	Hardness Testing	To determine the harness of a mild steel specimen by using hardness tester (Rockwell Hardness test)	2	CO4
8	UTM Testing	To learn the technique for determine of compressive strength of a brick through UTM.	2	CO5
e-Lear	ming Source:			
https:/	/www.vlab.co.in/			

					(Course A	Articula	tion M	atrix: (M	apping of	COs with	POs and PS	Os)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		3			3	2		3	3	2	2
CO2	3	2	2	2		3			3	2		3	3	2	2
CO3	3	2	3	2		3			3	2		3	3	2	2
CO4	3	3	3	2		3			3	2		3	3	2	2
CO5	3	3	2	1		3			2	2		3	3	2	2

Effective from Session: 2015	5-16						
Course Code	CS102	Title of the Course	COMPUTER PROGRAMMING LAB	L	Τ	P	C
Year	Ι	Semester	П	0	0	2	1
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• To • To • To	be able to develop logic learn the use of C librar learn the file handling a	and syntax of C programming. s which help them to create programs and applications usin ies functions in C language. nd basic memory allocation concepts in C language. mming, they can easily switch over to any other language.	g C la	nguage		

	Course Outcomes					
CO1	Able to understand the basic concepts of C programming language and their implementation.					
CO2	Able to design and develop various programming problems using C programming concepts.					
CO3	Able to analyze and develop programs on pointers and functions.					
CO4	Able to develop programs on different operations on arrays, matrices & strings.					
CO5	Able to implement programs on structure, union & Dynamic memory allocation.					

S. No.	List of Experiments	Contact Hrs.	Mapped CO
1	Write a Program to print any message.	2	1
2	Write a Program to print sum and multiply of two numbers.	2	1
3	Write a Program to enter the temperature in Celsius(c) then count it into Fahrenheit.	2	1
4	Write a Program to swap the number taking the help of third variable.	2	1
5	Write a Program to calculate the volume of box.	2	1
6	Write a Program to swap the number without taking the help of third variable.	2	2
7	Write a Program to check a year is leap year not.	2	2
8	Write a Program to print number is even or odd.	2	2
9	Write a Program to Print month of name using switch case.	2	2
10	Write a Program to print the no is positive or negative.	2	2
11	Write a Program to find the greater number enter by user.	2	2
12	Write a Program to find the greater number Input 3 No.	2	2
13	Write a Program to enter any no and check whether the given no is palindrome or not.	2	3
14	Write a Program to enter any no. and check whether the given no. is Armstrong or not.	2	3
15	Write a Program to Print Pattern * * * * * * * * * * * * * * * * * * *	2	3
16	Write a Program to Print Pattern 1 2 3 4 1 2 3 1 2	2	3
17	Write a Program to Print Pattern 1 1 2 1 2 3 1 2 3 4	2	3
18	Write a program to find in C to design the report card of 5 subject according to the following condition if the total percentage are. >=35 and <45 IIIrdDiv	2	3
19	Write a Program to create 2-D array or order M*N and insert the element and display it.	2	4
20	Write a Program to find the addition of two matrix of order M*N.	2	4
21	Write a Program to find the Transpose of the matrix.	2	4
22	Write a Program to swap two numbers Call by Value.	2	5
23	Write a Program to swap two number using function pointers.	2	5
		-	5

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО	101	102	105	104	105	100	10/	100	109	1010	IOII	1012	1301	1302	1305
CO1	1	1	2		3		3						2	1	1
CO2	1	1	1	2	1		3						2	1	1
CO3	1	2	2	2			3						2	1	1
CO4	1	2	2	2			3						2	1	1
CO5	1	2	1				3						2	1	1

Effective from Session: 202	0-21						
Course Code	LN151	Title of the Course	Basic Professional Communication Lab	L	Т	Р	С
Year	I st	Semester	I/II	0	0	2	1
Pre-Requisite	10+2	Co-requisite	U.G. Program				
Course Objectives	 pur The Eng The in p Stu con on o The optimization of the second seco	poses through the study e key component of the glish language which is is e Department of Langua professional communica dents will be given new fidence which will help one's soft skills & profe	ges caters to the needs of the students aspiring for training, tion with a marked emphasis on English for Specific/Specia insights into the concepts of soft skills & professional com- them choose and build a better career which depends not or ssional ethics also. vercome their fear & anxiety of public speaking & guide them	y com expert l Purpo munica ily on	munica ise and oses (Es ation to the hard	tion in excelle SP). boost tl l skills,	the ence heir but

Course Outcomes

CO1	Students will be introduced to the basic understanding of communication and Professional Communication. Knowledge of Professional, cultural
	and cross-cultural communication will be imparted. Meaning and process of communication, verbal and nonverbal communication will be
	focused.
	Basic Understanding of communication and Professional/Business Communication will be provided. They will also learn & practice how to
	introduce oneself in professional setting & how to manage speaking anxiety
CO2	Corrections in basic English sounds and correct pronunciations will be practiced by various
	Listening exercises & word games to help them become better conversationalist.
CO3	Basic tools of communication and improvement in communicative competence.
	Improvement in communicative competence will be done by using various software applications,
	showing them cultural movies & involving them in exercises like small & situational talk.
CO4	Phonetic Alphabet and Phonetic Transcriptions will be taught & practiced to improve vocal clarity & pronunciation. Understanding the structural
	and functional grammar and basic structure of language.
CO5	Intonation & Stress will be practiced to make them learn how paralinguistic features dramatically affect
	meaning & how it can help one in becoming a persuasive & engaging speaker.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Introduction	Difference between Introduction and Description, SWOT Analysis	6	CO 1							
2	Software -I	Listening exercises, Pronunciation improvement through self- testing, Vocabulary improvement through word games	6	CO 2							
3	Software – II	Conversational skills, Exercises based on Language Skills/ Small talk, Cultural movies	6	CO 3							
4	4 Phonetics 6 CO 4 4 Phonetic Alphabet and Phonetic Transcriptions 6 CO 4										
5	Non-verbal communication	Intonation and Stress	6	CO 5							
Referen	ce Books:										
1. Gerso	n, Sharon J. <i>Technical W</i>	<i>Triting: Process and Product</i> (5 th edition). Prentice Hall, 2005.									
2. K. Flo	oyd, Interpersonal Comm	unication: The Whole Story. McGraw Hill, 2009.									
3. Green	baum, Sidney and Nelso	n Gerald, An Introduction to English Grammar. Routledge, 2009.									
4. Swan,	, Michael, Practical Engl	ish Usage. OUP, 2005.									
5. Murpl	hy, Raymond. English G	rammar in Use. Cambridge University Press, 2019.									
6. Kuma	Kumar, Sanjay and Pushp Lata., Communication Skills. Oxford University Press, Oxford 2011.										
7. Rama	7. Raman, Meenakshi, and Sangeeta Sharma. Technical Communication: Principals and Practice. Second Edition, Oxford University Press, 2012.										
8. Gerso	n, Sharon J. Technical C	ommunication: Process and Product (9th edition). Longman Pub., 2016.									
e-Lear	ning Source:										
	ttps://ndl.iitkgp.ac.in./										

5. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=9RA537jM1m7VD3VCoav4lQ==

6. https://library.iul.ac.in/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	3	3	3	3	3	N.A.	N.A.	N.A.	N.A.	N.A.	3	3	3	3	3	N.A.
CO2	3	3	3	3	3	3	3	N.A.	N.A.	N.A.	N.A.	N.A.	3	3	3	3	3	N.A.
CO3	3	3	2	3	3	3	3	N.A.	N.A.	N.A.	N.A.	N.A.	3	3	3	3	3	N.A.
CO4	3	3	2	3	3	3	3	N.A.	N.A.	N.A.	N.A.	N.A.	3	3	3	3	3	N.A.
CO5	3	3	3	3	3	3	3	N.A.	N.A.	N.A.	N.A.	N.A.	3	3	3	3	3	N.A.
					11 T	0	1 4*	2.34	1 4 4	7 1 4	2.0	1 4 4	Connel					

Teaching	and	Learning	Flipped Classrooms, Concept Mapping, Information-Based Approach, Personal-Response Approach,
methods			Language-Based Approach, Paraphrastic Approach, Moral-Philosophical Approach and Stylistics Approach
List/Topics	A otiviti	og Dlannad	Information-Based Activities, Personal-Response Activities, Language-Based Activities, Periphrastic
1			
that are bey	ond Syl	labus	Activities, Moral-Philosophical Activities, and Stylistics Activities, Presentations, Small talk, Situational talk,
			role playing, Group Discussions, Assignments are used as a medium to work on cognitive
			development/growth.

Effective from Session: 2023	3-2024						
Course Code	EE103Title of the CourseBasic Electrical Engg.L						
Year	1 st	Semester	1 st	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Stu Stu Stu 	dy of AC fundamentals, dy of concept of Three I dy of concept of Magne	rsis and Network Theorems Circuit. , Single-Phase AC Circuits. Phase AC system, Circuits and measuring devices.\ tic Circuit and Transformer l energy conversion devices: AC/ DC Machines.				

	Course Outcomes
C01	Knowledge about the concept of D.C Circuit Analysis and Network Theorems Circuit.
CO2	Knowledge about Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO3	Knowledge about concept of Three Phase AC Circuits Three phase system and measuring devices
CO4	Knowledge about Magnetic Circuit and transformer
CO5	Knowledge about Electromechanical energy conversion devices: AC/ DC Machines

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	D.C Circuit Concept and its Analysis	Circuit concepts: Active and passive elements, linear and nonlinear network, unilateral and bilateral elements, Series and Parallel Connections, Ohm's Law, Kirchhoff's Law, Loop analysis and nodal analysis Network theorems: Superposition theorem, Thevenin's theorem, Maximum Power Transfer theorem	8	CO1
2	Domestic/Single Phase A.C. Circuit Analysis	AC fundamentals: Average and effective value of Sinusoidal waveform, form factor and peak factor, Concept of phasors, Analysis of R, L and C Circuits, power factor, Apparent, Active and Reactive power, causes and problems of low power factor, resonance in series RLC circuit	8	CO2
3	Commercial/ Industrial Three Phase AC Circuits and its measurement	Three phase system: Its necessity and advantages, meaning of phase sequence, line and phase voltage/current relationship in star and delta connections Measuring Instruments: Types of instruments: construction and working principle of PMMC, MI type instruments, Electrodynamometer type wattmeter	8	CO3
4	Transformer and its concept in Household/ Commercial application	Magnetic circuit: Concepts, analogy between electric and magnetic circuit. Single Phase Transformer: Principle of operation, construction, emf equation, losses and efficiency	8	CO4
5	House Hold/Industry oriented Electrical Machines	DC Machines: Construction, Principle of operation and application Single Phase Induction Motor: Principle of operation and application Three Phase Induction Motor: Principle of operation and application Three Phase Synchronous Machines: Principle of operation and application	8	CO5
Referen	nce Books:			
1. V. De	eltoro, "Principle of Elec	etrical Engg.", PHI, 2 nd edition, 2009		
2. M. A	. Mallick, Dr. I. Ashraf,	"Fundamental of Electrical Engg.", CBS Publishers, 1st edition, 2010		
3. A. Hı	ussain, "Basic Electrical	Engg.", Dhanpat Rai & Sons, 3 rd edition, 2016		
		Engg.", TMH, 4 th edition, 2019		
o I oo	rning Source:			

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	3	2	1	1	3						3	3	3	2	3
CO2	3	3	3	2	1	1						2	3	2	2	3
CO3	3	2	1	1	2	2	3					3	2	2	2	3
CO4	3	2	2	2	3	3						2	3	2	2	3
CO5	3	1	1	1	1	2	1					2	3	2	2	3
	4- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation															

Effective from Session: 2022	Effective from Session: 2022-23									
Course Code	EE201	Title of the Course	LINEAR NETWORK AND SYSTEMS	L	Т	Р	С			
Year	2 nd	Semester	3 rd	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	• To • To	analyze the theoretical a know about transient sta	ts about basic laws and theorems and practical values of given circuit ate and steady state ts about stability, two port network and graph theory							

	Course Outcomes
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to the analysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Concept and AC Network theorems	Kirchoff's law, Source transformation, loops analysis, node analysis, super mesh and super node. AC Network theorems: Superposition, Thevenin's, Norton's, Maximum power transfer theorem, Reciprocity, Substitution, Compensation, Millman's and Tellegen's theorem.	8	CO1
2	Transient and steady state analysis	Transient and steady state analysis for R-L, R-C and RLC circuits, Initial value and final theorem Use of Laplace transform in circuit analysis, Solution of differential equations. Lap lace transform of complex waveform.	8	CO2
3	Network Synthesis	Concept of poles and zeros, transfer function, Stability, Hurwitz Polynomial, Positive real function: Definitions and properties, Synthesis of RC, LC and RL Networks using Cauer and Foster I and II forms	8	CO3
4	Two port networks	Two port parameters, Inter-Conversion of two port Parameters, Interconnections of Two port networks, Reciprocity and Symmetry, T-pie transformation.	8	CO4
5	Introduction to graph theory	Definitions: Branch, Graphs, Tree, Co- tree, Path and Loop, Concept of Planner and non planner network, Incidence, Cut-set, Tie-set matrices for planer network. loop and nodal analysis.	8	CO5
Referen	ce Books:			
1. M.E.V	Van Valkenburg, Netwo	rk Analysis, PHI		
2. J.A.E	dminister, Electric Circu	its, Schaum Series, PHI		
3. W.H.	Hayt and Jack.E.Kamm	erly, Engineering Circuit Analysis, Tata Mc Graw Hill		

4. A.Hussain, Network and Systems, Khanna publications

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	2	3	2	1		1	1	1		2	3	3	2	2		
CO2	3	2	3	3	2	2	1	2		1		1	3	3	3	2		
CO3	3	3	2	3	2	1							3	2	2	2		
CO4	3	2	2	3	1			1		1		1	3	3	2	2		
CO5	3	3	3	3	2	1		1		1			3	2	2	3		

Effective from Session: 2022	Effective from Session: 2022-23													
Course Code	EE 203	Title of the Course	Electro Mechanical Energy Conversion-I	1	0	4	С							
Year	2 nd	Semester	3 rd	3	1	0	4							
Pre-Requisite	None	Co-requisite	None											
Course Objectives														

	Course Outcomes
CO1	Analyze magnetic circuit of rotating machines(AC and DC)
CO2	Develop the winding diagram of DC machines
CO3	Analyze the performance of DC machines
CO4	Analyze the performance of single phase transformer
CO5	Analyze the phase groupings of three phase transformers

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principle of EMEC Introduction	Introduction, Energy in electromagnetic system, Flow of energy in electromechanical devices, Energy in magnetic field and co energy, Dynamics of electromechanical systems, Singly excited systems, Doubly Excited System	8	CO1
2	DC Machines	Construction, function of commutator, simplex lap and wave windings, emf and torque equations, armature reaction and commutation, remedial measures used for reducing commutation, D.C. generator characteristics	8	CO2
3	DC Machines and Special Machines	Characteristics of dc motors,testing of dc machines,Hopkinson's test and Swinburne test,dc motor starters,speed control and braking of dc motors Special Motors :Universal motor,PM dc machines,hysteresis motor,reluctance motor and stepper motor	8	CO3
4	Electrical Transformer -I	Principle of transformer action, construction of two winding transformer, equivalent circuit and phasor diagrams of ideal and real transformers, losses in transformers, Testing: open circuit, short circuit tests and Sumpner's test, per unit system, Efficiency and voltage regulation	8	CO4
5	Electrical Transformer -II	Autotransformers:Introduction,comparison with two winding transformers,Three phase transformer:Construction,phase groupings,parallel operation,Phase transformation:Three phase to two phase,single phase and six phase ,applications of different types of transformer	8	CO5
	nce Books:			
	•	Fitzgerald, Kingsley (McGraw Hill),6 th Edition,2020		
2. Ele	ectrical Machines ar	nd their Applications, J Hind Marsh,4th Edition,1984		
		ical Machines, B.R. Gupta & V. Singhal ,New Age International Pub.,2005		
4. Ele	ectric Machinery an	d Transformers, I.L.Kosow, PHI,2007		
e-Lear	rning Source:			
NPTE				

						С	ourse A	Articul	ation N	Aatrix: (Mappin	ng of COs	s with PO	s and PSC	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO	101	102	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502	1504	1505	1500	1507
C01	3	3	2	1	1	3						3	3	2	1	3		
CO2	3	3	3	2	1	1						2	3	2	2	2		
CO3	3	2	1	1	2	2	3					3	2	2	1	3		
CO4	3	2	2	2	3	3						2	3	3	1	2		
CO5	3	1	1	1	1	2	1					2	3	1	2	2		

Effective from Session: 2022	2-23						
Course Code	EE205	Title of the Course	Solid State Devices & Circuit	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	adv To and To Hov app To and	ancement in conductivi facilitate and understan their various types' app develop and analyze the w to develop concept lications. To analyze the analyze the design consi	concept of special purpose diodes and their industrial app ty of semiconductors material. d the advancement in transistors like JFET, MOSFET, PM olications in Industries. Analyze the frequency response. performance of small signal amplifiers and large signal ampl of feedback amplifiers, their different topologies and In eir stability and their responses for different applications. derations of the active and passive filters. How to develop th tions. To understand the constructional difference and wor	OS, N ifiers (mplem e vario	MOS, (Power a ent it f	CMOS amplifie for vari ers of fil	etc. ers). ous ters

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switches, amplifiers etc.
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' applications in Industries. Analyze the frequency response of these devices as different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers (Power amplifiers). To understand and implement the various power amplifier in applications as transmitter and receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for various applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
		Special Diodes, LED, Zener, Varactor, Schottky barrier, photo diode, and tunnel diode: their	8	CO1
1	Diode and BJT	constructions and characteristics. Bipolar Junction Transistors, biasing of BJT, equivalent		
		circuit, Transistor as a switch, cut off and saturation region, complete static characteristics of		
		BJT, Darlington pair.		
	FET and MOS	Field Effect transistor: Structure and physical operation. Enhancement and depletion types	8	CO2
2		MOSFET, Classification of MOS: NMOS, PMOS and CMOS I/V characteristics, Biasing of		
2		FET, Low and high frequency response of common source and common emitter		
		configuration, Common base and Common gate cascade configurations, CC-CE cascade		
	Amplifiers	Small signal amplifiers: BJT and MOSFET, Frequency response improvement,	8	CO3
3		Classification of amplifiers: Class A, Class B, Class C amplifiers, Power amplifiers, push		
		pull amplifiers, DC amplifier, coupling methods.		
	Feedback	Basic concept, General feedback structure, properties of negative feedback, four basic	8	CO4
4	amplifiers	feedback topologies: series-series, series-shunt, shunt-series and shunt-shunt, determination		
	_	of Loop gain, stability analysis, wave shaping circuits.		
	Filters &	Active filters, Oscillators, condition for oscillation, Basic principles of sinusoidal oscillator,	8	CO5
5	Oscillators	RC oscillators, Phase Shift oscillator, Wein bridge oscillator, Hartley and Colpitt's oscillator,		
		Crystal Oscillator, Operational amplifier: Characteristics and application		
Referen	ce Books:			

1. A.S. Sedra and K.C. Smith, "Microelectronic circuits", Oxford University Press (India). 2. B.P. Singh & R. Singh, Electronics Devices & Integrated Circuits, Pearson.

2. Millman, J. and Grabel, A., 'Microelectronics',/McGraw Hill.

3. Bell, David A,'Electronic Devices & Circuits', Prentice Hall (India) 4th Edition.

4. Nair, B. Somanathan, 'Electronics Devices & Applications', Prentice-Hall (India)

5. Neamen, Donald A., 'Electronic Circuit Analysis & Design', Tata McGraw Hill.

6. Sedra, 'Micro Electronics Circuits', Oxford University Press.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	2	3	3	1	1	1		2	2	2	2	2	2		
CO2	3	3	2	3	2	3	2						2	2	1	2		
CO3	3	2	3	2	2	2	1	1			1	1	2	3	2	2		
CO4	3	1	1	1	2	2	2						2	2	1	2		
CO5	3	1	1	1	2	2	2						2	3	1	3		

Effective from Session: 2016	5-17						
Course Code	EE207	Title of the Course	Fundamentals of EMFT	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	spa • To • To ma • To the • To	ace and obtain the soluti analyze the electrostatic realize and examine the gnetic materials recognize the concepts of Concepts of Displacem	about Coordinates systems. To develop ability for analysis of on of electromagnetic problems by Vector theorems and Op s problems by applying fundamental law's. magneto statics problems and response the behavior of mag of Gauss Law and Maxwell equation by investigation in real ent Current and Wave Propagation. Guided Waves and transmission lines by various parameters	erators metic f	s. Telds in Iomain	differe: . To lea	

	Course Outcomes
CO1	Given a physical quantity, students shall be able to represent this in vector and scalar form, identify type of system, apply vector algebra, and
	formulate the expression in different coordinates and solve using vector theorems.
CO2	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws
	and Divergence theorem.
CO3	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine, analyze and
	evaluate the characteristics by Maxwell's Equation and Boundary Conditions
CO4	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of
	application of Maxwell's equation, develop various combination for Power by Pyonting Vector and explain the functions of its main
	components.
CO5	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve/ analyze, and modify its form

		Content of Unit	Contact Hrs.	Mapped CO
1	Unit I	Review of scalar and vector field, Co-ordinates systems and their transformation (Cartesian, cylindrical and spherical). Vector representation of surfaces, Del operator, Gradient of Scalar, Divergence of vector and Divergence theorem, Curl of vector and Stocks Theorem, Laplacian of Scalar.	8	CO1
2	Electrostatic Fields	Coulombs law and field Intensity, Electric flux density, Gauss's law and its application, Electric potential, Electric dipole and flux lines, Energy density. Introduction to conductors, Dielectrics polarization, Continuity equation, boundary conditions, Poisson's and Laplace's equation.	8	CO2
3	Magneto-static Fields	Biot-Savarts Law, Ampere's circuit law, Magnetic flux density, Magnetic scalar and vector potentials. Force due to magnetic fields, Lorentz-force equation, Magnetic torque and moment Magnetization in material, Boundary conditions, Energy density.	8	CO3
4	Time-Varying Fields & Wave propagation	Faraday''s law, displacement current, Maxwell's equation in integral and point form, Time varying potential, Time Harmonic Fields. Propagation of uniform plane waves in free space, dielectric and conductors, Pyonting theorem and power flow, Reflection of plane wave at Normal Incidence.	8	CO4
5	Guided waves & Transmission line	Introduction to guided waves, Rectangular waveguide. Transmission line parameter, Transmission line equations, Characteristic impedance, propagation constant (for lossless lines and Distortion-less lines), Input impedance, reflection coefficient, Standing wave ratio and Power. Open and short circuited lines.	8	CO5
Referen	ce Books:			
1. Eleme	ents of Electromagnetics	- "M.N.O. Sadiku", oxford University Press		
2. Electro	omagnetic waves and R	adiating systems- E.C.Jorden, D.G.Balmein		
3. Engin	eering Electromagnetics	- "W.H.Hayt & J.A. Buck", TMH.		
4. Electr	omagnetic- J.F.D.Kraus	, R.C.Keith		

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01	3	3	2	1	2	1							2			2		
CO2	3	3	1	1	2								1	2	1	2		
CO3	3	3	1	1	2								1	3		2		
CO4	3	3	1	1	2							1	1	2		2		
CO5	3	3	2	2	2		1	1					2	3		3		

Effective from Session: 2022-23												
Course Code	EE 202	Title of the Course	Network Lab	L	Т	Р	С					
Year	II	Semester	III	0	0	2	1					
Pre-Requisite	EE103	Co-requisite	NIL									
Course Objectives	To analyTo know	ze the theoretical & pra about transient state ar	out basic laws & Theorems. ctical values of given circuit. Id steady state. out stability, two-port network and graph theory.									

Course Outcomes

CC)1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of Theorems by Multimeter; contribute in related
		development
CC)2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of RC, RL and RLC circuit by CRO; contribute in
		related development
CC)3	Adopt, perform, analyze and implement the methods of two-port networks; contribute in related development
CC)4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for
		RL, RC, and RLC circuits and analyze the characteristics of the system.

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO								
1	To verify Superposition theorem for dc network	2	1								
2	To verify Thevenin's theorem for dc network	2	1								
3	To verify Tellegen's theorem for dc network	2	1								
4	To verify Maximum power transfer theorem for dc network	2	1								
5	5To study transient response of RC series circuit22,4										
6	6 To study frequency response of RLC series circuit 2 2,4										
7	7 To determine the h-parameter of a port resistive network 2 3										
8	To determine the z-parameter of a port resistive network 2 3										
9	To determine the ABCD-parameter of a port resistive network	2	3								
10	To study transient response of RLC series circuit	2	2,4								
Referenc	e Books:										
1. M. E. V	an Valkenburg, "Network Analysis", Chaukhamba Auriyantaliya Publication, 3 rd Edition, 2010.										
2. J. A. E	Iminister, "Electric Circuits", Schaum Outline Series, McGraw Hill Education; 5th edition, 2017.										
3. W. H. I	Hayt and Jack E. Kammerly, "Engineering Circuit Analysis", McGraw Hill Education; Eighth edition, 2013										
4. A. Hus	sain, "Network and Systems", Khanna Book Publishing Co. (P) Ltd.; Second edition, 2019.										
e-Lea	ning Source:										

PO-PSO Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PO1 PSO4 CO CO1 CO2 CO3 **CO4**

Effective from Session: 2022	Effective from Session: 2022-23												
Course Code	EE 204	Title of the Course	Title of the Course Electromechanical Energy Conversion I Lab										
Year	Π	Semester	Ш	0	0	2	1						
Pre-Requisite	None	Co-requisite	None										
Course Objectives	 Kn Ap Ap 	owledge of three pl pply the knowledge pply the knowledge	rating principle of 3 point and 4 point starters and nase transformers connections and protection syst to control the speed of DC motors to obtain the magnetization characteristics of DC of DC machines on the basis of external character	em gene	rator	ations							

	Course Outcomes									
CO1	Analyze and implement different starters for starting DC motors									
CO2	Analyse and apply the different speed control methods for DC motors									
CO3	Analyse, test and determine the performance of single phase transformers									
CO4	Apply the knowledge practically to determine the performance of DC machines under no load and loading condition									

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study three point starter and four point starter.	2	1
2		Open Circuit Characteristic of DC Shunt Generator.	2	4
3		Study of Three Phase Transformer.	2	3
4		Armature and Field control of a compound motor	2	2
5		Speed Control of a DC shunt motor by armature and field control.	2	2
6		To obtain load Characteristic of DC Series Generator.	2	4
7		Polarity test of Single Phase Transformer	2	3
8		Parallel operation of D.C Generators.	2	4
Referen	ce Books:			L
1. V.D	eltoro, "Principle of	f Electrical Engg." PHI, 2009		
2. M.A	Mallick, Dr. I. Asł	raf, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
3. A. F	Iussain, "Basic Elec	trical Engg" Dhanpat Rai & sons, 2007		
4. I J N	agrath,"Basic Electric	al Engg", TMH, 2010.		
e-Lea	rning Source:			
		ttps://www.vlab.co.in/participating-institute-iit-roorkee)		
	X			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	2	3									3	1	2	3			
CO2	1	2	3									3	1		3			
CO3	1	2	3									3	1		3			
CO4	1	2	3									3	1		3			

Effective from Session: 2016-17											
Course Code	EE 206	Title of the Course	SSDC Lab	L	Т	Р	С				
Year	Π	Semester	Ш	0	0	2	1				
Pre-Requisite		Co-requisite									
Course Objectives	To develop knowledge and application of fundamental electronic circuits and physical electronics semiconductor devices, including design, construction and testing of experimental electronic circuits.										

	Course Outcomes
CO1	To designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement
	in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switch, amplifiers
	etc
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' of applications in
	Industries. Analyze the frequency response of these devices as
	different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	Developing the concept of feedback amplifiers, their different topologies and implement it for
	various applications. To analyze their stability and their responses for different applications.
CO4	To analyze the design considerations of the active and passive filters. How to develop the various
	orders of filters and their industrial applications. To understand the constructional difference and
	working of various types of oscillators. How the oscillators can be developed and their use in
	industries.

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		Study of Clipping circuit and Clamping circuit	2	3
2		Study of LED (Red, Green, Yellow)	2	1
3		Study of single stage RC coupled transistor amplifier	2	2
4		Study of Emitter follower circuit and determine and determine a) Maximum signal handling capacity at 1 KHz at no load b) Plot frequency response at no load	2	1
5		 Study of Wein's Bridge oscillator a) Determine the frequency of oscillation b) Determine the value of unknown capacitance Cx 	2	4
6		Application of operation amplifier as Inverting, Non- Inverting, and unit gain amplifier(buffer).	2	3
7		Application of an operational amplifier as a differentiator and integrator. Plot frequency response	2	3
8		Study of MOSFET, plot V-I characteristics of N-MOS and P-MOS, find r_d , g_m and draw equivalent circuit.	2	2
9		Study of Clipping MOSFET as an amplifier (CS)	2	2
10		Study of Differential Amplifier using BJT	2	3
	ce Books: l, David A/ "Electronic l	Devices & Circuits"/Prentice Hall (India) 4th Edition.		
2. A.S. S	Sedra and K.C. Smith, "	Microelectronic circuits", Oxford University Press (India).		
3. Milln	nan, J. and Grabel, A./"	Microelectronics"/McGraw Hill.		
4. Neam	en, Donald A./ "Electro	nic Circuit Analysis & Design"/Tata McGraw Hill.		
e-Lear	rning Source:			

Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PO4 PSO1 PSO2 PSO PO1 PO2 PO3 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO3 PSO4 CO 3 2 2 2 2 3 3 1 3 1 CO1 3 2 3 2 2 3 1 1 1 CO2 3 1 1 3 2 2 3 1 CO3 CO4 3 1 1 3 2 2 3 1

Effective from Session: 2016-17								
Course Code	EE 208	Title of the Course	ELECTRICAL WORKSHOP LAB	L	Т	Р	С	
Year	II	Semester	III	0	0	2	1	
Pre-Requisite		Co-requisite						
Course Objectives	• To • To	understand and experim understand and experim	ent with the measurement of Electronic Circuits and system ent with the Semiconductor devices and integrated circuits. ent with Transformer assembly. uit Board and Preparation of PCB.	s.				

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of components of Electronic Circuits and systems.
CO2	Adopt, perform, analyze and implement the concepts of Transformer, Chokes, Potentiometer.
CO3	Adopt, perform, analyze the Semiconductor devices and integrated circuits.
CO4	Adopt, perform, and implement the designing of Printed Circuit Board (PCB) and related development

Exp. No.	Title of the Unit	Content of Experiment	Contac t Hrs.	Mapped CO
1		To study the components of Electronic Circuits and systems. Types according to construction, rating and tolerance of Resistors, Capacitors, Inductors.	2	1
2		Study of Transformer, Chokes, Potentiometer, Switches and Rectifiers.	2	2
3		To study Semiconductor devices and integrated circuits: different rating and packages. Power Semiconductor devices and Heat Sinks.	2	3
4		To perform winding of Transformer, assembly of core and complete the transformer and also explain the various materials involved in it.	2	2
5		Preparation of Printed Circuit Board (PCB) and perform drilling on the PCB.	2	4
6		To perform soldering of components on the PCB and assembled circuit.	2	2
7		To perform Assembly of Electronic Circuits and Systems- Soldering and Communication Cable jointing. Bread Board Assembly of a regulated d.c. power supply.	2	3
8		Assembling of an unregulated DC power supply in a steel cabinet along with complete wiring.	2	4
9		Mini project (I): Stair case wiring.	2	4
10		Mini project (II): Core type transformer winding.	2	4
Referen	ce Books:			
1.	R.P Singh Electrical	Workshop, I.K. International Publishing House Pvt. Limited, 2005		
2.	A Textbook of Electri	cal Workshop Practices ,S.K. Kataria & Sons: 2019		
3.	P. S. Bimbhra Electric	cal Machinery : Dhanpat Rai & sons, 2007		
4.	I J Nagrath, "Basic Ele	ectrical Engg", TMH, 2010.		
e-Lear	ning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2016-17									
Course Code	EE209	Title of the Course	Electrical Measurement & Measuring Instruments	L	Т	Р	С		
Year	2 nd	Semester	4 3 1						
Pre-Requisite	None	Co-requisite	None						
Course Objectives	To understand energy meter To understand To understand	l three phase power mea and instrument transfor l measurement of low, 1 l use of ac potentiomete	em, measurement methods and errors, measurement of electr asurement; working of thermocouple, electrostatic and rectif mer medium and high resistances, use of ac bridges and Q meter or; measurement of speed, frequency and power factor f electrical quantities; CRO and its application	-					

	Course Outcomes
CO1	Adopt the methods of measurement, investigate the errors in measurement, analyze and rectify; perform analog measurement of electrical
	quantities; contribute in related development
CO2	Perform three phase power measurement; use thermocouple, electrostatic, rectifier type instruments, energy meter and instrument transformer
	for measurement; identify errors in energy meter and adopt remedies; adopt extension of instrument range using instrument transformer;
	contribute in related development
CO3	To perform measurement of low, medium and high resistances; perform measurement of inductance and capacitance using ac brides; adopt use
	of Q meter, contribute in related development
CO4	To adopt use of ac potentiometer; perform measurement of speed, frequency and power factor; contribute in related development
CO5	To perform digital measurement of electrical quantities; adopt application of CRO, dual trace and dual beam oscilloscopes; contribute in related
	development

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit I	Philosophy of measurement: Methods of measurement, measurement system, classification of instrument system, characteristics of instrument and measurement system, error in measurement and its analysis. Analog measurement of electrical quantities: PMMC type Instruments, Moving Iron type Instruments, Electrodynamics type Instruments' three phase wattmeter, error and remedies in wattmeter.	8	CO1
2	Unit II	Power measurements in three phase system, Thermocouple, electrostatic and rectified type ammeter and voltmeter, Energy meter, error and remedies in energy meter. Instrument transformer and their application in the extension of instruments range.	8	CO2
3	Unit III	Measurement of parameter: Different methods of measurement of low, medium and high resistances, measurement of inductance and capacitance with the help of AC bridges, Q-meter.	8	CO3
4	Unit IV	AC Potentiometer: Polar type and co-ordinate type AC potentiometer, application of AC potentiometers in electrical measurement. Measurement of speed, frequency and power factor.	8	CO4
5	Unit V	Digital measurement of electrical quantities: concept of digital measurement, block diagram, study of digital voltmeter, frequency meter, Cathode ray oscilloscope: Basic CRO circuit (block diagram), cathode ray tube (CRT), and its components, application of CRO in measurement, Lissajous pattern, Dual trace and dual beam oscilloscopes.	8	CO5
Referen	ce Books:			
1. E.W.	Golding & F.C. Widdis,	"Electrical measurement & Measuring Instrument", A. W. Wheeler & Co. Pvt. Ltd. India.		
2. A.K.	Sawhney, "Electrical &I	Electronics Measurement & Instrument", Dhanpat Rai &Sons, India.		
3. M.B.	Stout,"Basic Electrical	Measurement" Prentice hall of India, India.		
4. Fores	t K. Harries," Electrical	Measurement", Willey Eastern Pvt. Ltd. India.		
e-Lea	rning Source:			

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	1	2	3							2	2	2		3		
CO2	3	3	1	2	3							2	2			3		
CO3	3	1	1		3							2	2			3		
CO4	3	1	1		3							2	2			3		
CO5	3	1	1		3							2			2	3		

Effective from Session: 2022-23							
Course Code	EE 211	EE 211 Title of the Course Electro Mechanical Energy Conversion-II		1	0	4	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	IdeAnTo	ntify different ac mot alyze different ac mad evaluate the performa					

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
CO5	Evaluate the performance of synchronous machines

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Three phase Induction Machine I	Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations, Torque- slip characteristics, no load & blocked rotor tests, efficiency, Induction generator & its applications.	8	CO1
2	ThreephaseInductionMachine- II	Starting, Deep bar and double cage rotors, Cogging & Crawling, Speed Control (with and without EMF injection in rotor circuit).	8	CO2
3	Single phase Induction Motor	Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods, repulsion motor. AC Commutator Motors: Universal motor, single phase a.c.series compensated motor, stepper motors.	8	CO3
4	Synchronous Machine I	Constructional features, Armature winding, EMF Equation, Winding coefficients, equivalent circuit and Phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque coefficient.	8	CO4
5	Synchronous Machine II	Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads, V- Curves, Hunting & damping, synchronous condenser.	8	CO5
	ce Books:			
1. D.F	P. Kothari & I.J. Nagra	ath, 'Electric Machines', Tata Mc Graw Hill,2004.		
2. Asł	nfaq Hussain ,'Electri	c Machines', Dhanpat Rai & Company,2010.		
		and S.D.Umans, 'Electric Machinery', MC Graw Hill,2014.		
4. P.S	Bimbhra, 'Electrical	Machinery', Khanna Publishers,2003		
0 I 001	rning Sourco:			

e-Learning Source:

				Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
СО																		
CO1	3	2	2	1								3	3	2	1	3		
CO2	3	2	3	1								2	3	2	2	2		
CO3	3	1	1	1								3	2	2	1	3		
CO4	3	2	2	2								2	3	3	1	2		
CO5	3	2	1	1			1					2	3	1	2	2		

Effective from Session: 2022	2-23						
Course Code	EE213	Title of the Course	Numerical Analysis and Applications	L	Т	Р	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	nume To s comp To s form To c inter boun	erical results of the prob olve problems in the f outing of numerical resu olve complex mathema ulation of mathematical leal with various topic polation and regression	Tield of applied mathematics, theoretical physics and eng lts using certain raw data. atical problems using only simple arithmetic operations. models of physical situations that can be solved with arithm s like finding roots of equations, solving systems of lin analysis, numerical integration & differentiation, solution d solution of matrix problems.	The anetic of ear al	ng which approac peratior gebraic	ch requ h invo ns. equatio	ires lves ons,

Course	Outcomes

	course outcomes
CO1	Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
CO2	Describing and understanding of the several errors and approximation in numerical methods.
CO3	The explaining and understanding of the several available methods to solve the simultaneous equations by modern IT tools.
CO4	To solve problems in the field of applied mathematics, theoretical physics and engineering which requires computing of numerical results
	using certain raw data by using modern tools and follow the ethical rules.
CO5	To deal, communicate and environment sustainability with various topics like finding roots of equations, solving systems of linear algebraic
	equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value
	problems, and solution of matrix problems in the field of Engineering and modern life.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Errors and approximations	Error definitions, accuracy and precision, round off and truncation errors Roots of equations - Solution of Algebraic and Transcendental equations, Newton- Raphson method, Secant method, Bisection method, Fixed Iteration method, Regula-Falsi method. Finite differences - Forward differences, Back ward differences, Central differences.	8	CO1
2	Solutions of simultaneous linear algebraic equations	Gauss elimination method, Gauss-Jordan method, Matrix inversion method, LU decomposition methods, iterative method: Gauss-Seidel, Jacobi's method	8	CO2
3	Curve fitting	Introduction, method of least square, fitting of a straight line by method of least square, change of origin and scale, normal equations for different form of curve. Interpolation with equal and unequal intervals: Newton's Gregory forward interpolation, Newton's Gregory backward interpolation, Newton's divided difference interpolation, Lagrange's interpolation	8	CO3
4	Numerical differentiation	Newton's Gregory forward interpolation formula to get derivatives, Newton's Gregory backward interpolation formula to get derivatives, Newton's divided difference interpolation formula to get derivatives, Lagrange's interpolation formula to get derivatives Numerical integration: Newton-cotes quadrature formula, Trapezoidal rule, Simpson's rule, Boole's rule, Weddle's rule	8	CO4
5	Numerical solutions for ordinary differential equations	Initial and Boundary value problems, Picard method of successes approximation, Taylor's series method, Euler's method, Modified Euler method, Runge-Kutta Method (First, second, third and fourth order)	8	CO5
	ce Books:			
		Introduction to Numerical Analysis" Springer Science & Business Media, ISBN 978-1-47575-59		
2.Lloyd	N. Trefethen and Dav	id Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISI	BN: 978-0-8	98713-61-9,

Illustrated edition, 1997.

3.C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix: ((Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2		1									1		1	2		
CO2	3	2					1							2		2		
CO3	3	1										2		2		3		
CO4	3	2										1	2		2	2		
CO5	3	2					1							3		2		

Effective from Session: 201	6-17													
Course Code	EE217	Title of the Course	Signal System Analysis	L	Т	Р	С							
Year	2 nd	Semester	4 th	3	1	0	4							
Pre-Requisite	None	Co-requisite	None											
Course Objectives	• De	monstrate an understand	ling of the fundamental properties of linear systems											
Course Objectives	• Us	es of transform analysis	and convolution, to analyze and predict the behavior of line	• Uses of transform analysis and convolution, to analyze and predict the behavior of linear time invariant systems										

	Course Outcomes
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems.
CO2	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time system.
CO3	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain
CO5	Analyze the discrete time signals and system using DTFT, DFT and Z

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Formalizing Signals	Continuous-time/discrete-time, Periodic/non-periodic, even/odd, energy/power, deterministic/ random, Unit step, Unit ramp, Unit impulse, Sinusoid, complex exponential signals. Signal Properties: Periodicity, absolute integrability, determinism and stochastic character. System properties: Linearity, additivity and homogeneity, Scaling, shift invariance, causality. Continuous and discrete time linear shift invariance system: The impulse response and step response, convolution, input-output behavior.	8	COI
2	Fourier Transform Analysis	Fourier series representation, Exponential and compact trigonometric form of Fourier series, Fourier symmetry, Fourier Transform, convolution/ multiplication and their effect in frequency domain, magnitude and phase response, Fourier domain duality, inverse Fourier transform, Application to circuit analysis, Dirichlet's condition.	8	CO2
3	Discrete Fourier Transform	Discrete time Fourier transform (DTFT), Discrete Fourier transform (DFT), Parsevals theorem, properties convergence, Sampling theorem and its implication, Reconstruction: Ideal interpolator, zero order hold, aliasing and its effect, Relation between continuous and discrete time system.	8	CO3
4	Laplace Transform	Laplace Transform for continuous time signals and systems: The notion of Eigen function of LSI system, region of convergence, system functions, poles and zeros of system functions and signals Convolution theorem, Laplace domain analysis, Waveform synthesis, solution to differential equation and system behavior.	8	CO4
5	Z-Transform Analysis	Z Transform for discrete time signal and system, Eigen function, region of convergence ,system function, poles and zeroes of system sequences, Z domain analysis, solution of difference equation, pulse transfer function	8	CO5
	ce Books:			
	-	, "Basic System Analysis" 2nd Edition, Katson Publishing Delhi.		
		y and I.T. young, "Signals & Systems", Prentice Hall, 1983		
	0.	ork Analysis", Prentice Hall of India.		
		& Signals" Oxford University Press, 2008.		
5. I. J. N	agrath, S.N. Saran, R. R	Ranjan and S. Kumar, "Signals and Systems", Tata Mc. Graw Hill		
e-Lear	ning Source:			

						C	ourse A	Articula	ation N	latrix:	(Mappi	ng of COs	s with PO	s and PSC	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO CO1	3	3		2		1			1	1		1	2			3		
CO2	3	3	2	2					1	1		1		2		2		
CO3	3	3	2	2		1			1	1		1			2	2		
CO4	3	3	2	2		1			1	1		1		2		2		
CO5	3	3	2	2		1	1		1	1		1		2		2		

Effective from Session: 2016	5-17						
Course Code	EE221 (DE-I)	Title of the Course	Electrical Engineering Materials	L	Т	Р	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To man To poin To To 	understand the impact nufacturability and susta know the properties of nt of view. realize the potential of a	material science engineering. et of realistic constraints such as economic, environme inability. conducting, insulating, dielectric and magnetic materials fro semiconducting devices with their application. skills, and modern engineering tools necessary for electrica	om ele	ctrical of	enginee	ring

	Course Outcomes
CO1	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO2	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO3	To provide students with a moderate level understanding of the physics behind the semiconductors.
CO4	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO5	An understanding of the electrical engineering material science essential for them to work in different fabrication based industries and also motivate them to do innovative characterization based research while going for higher studies and also to work in R & D with scientific enthusiasm

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
Classification of Materials	Metals and alloys, polymers, conducting materials, characteristic of good conductors, commonly used conducting materials, smart materials, fuel cell, super alloys, memory alloys, degradation of materials,	8	CO1					
Dielectrics, Insulating and Conducting Materials	Dielectric strength, factor affecting strength, polarization, dielectric loss, Types of capacitor, Insulating & Dielectric Materials - Properties of insulating materials, classification of insulating materials, Piezoelectricity, Ferro electricity, Principle and Applications of Optical Fiber, Material for OH lines and UG cables, Fuse, soldering, Effect of temperature on transformer oil	8	CO2					
Semiconductors and their Applications	Types of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices, photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD.	8	CO3					
Magnetic Materials and their Applications	their magnetism, Curie Temperature, Hysteresis and its significance, soft and hard magnetic							
Fabrication and Characterization of Materials	Planar process,, lithography, etching, spin coating, sputtering, CVD, carbon nanotube, nanowires (synthesis, properties and applications), Material characterization techniques such as scanning electron microscopy, transmission electron microscopy, Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry.	8	CO5					
e Books:								
ekker, Electrical Engin	eering Materials, PHI.							
dulkar & S.Thiruvegada	a, An introduction electrical Engg Materials, S. Chand & Co.							
asap, Principles of Elect	ronic Materials & Devices, TMH							
L.V Azaroff, Introduction to Solids, Mc Grow Hill Company								
s Kittle, Quantum theor	y of Solids, John Wiley and Sons							
	Materials Dielectrics, Insulating and Conducting Materials Semiconductors and their Applications Magnetic Materials and their Applications Fabrication and Characterization of Materials e Books: ekker, Electrical Engin lulkar & S.Thiruvegada sap, Principles of Elect caroff, Introduction to S	Classification Materialsof Materialscommonly used conducting materials, smart materials, fuel cell, super alloys, memory alloys, degradation of materials, degradation of materials,Dielectrics, Insulating MaterialsDielectric strength, factor affecting strength, polarization, dielectric loss, Types of capacitor, Insulating materials, Piezoelectricity, Ferro electricity, Principle and Applications of Optical Fiber, Material for OH lines and UG cables, Fuse, soldering, Effect of temperature on transformer oilSemiconductors and ApplicationsTypes of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices, photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD.Magnetic MaterialsBasic concepts and definitions, origin of magnetism, dia, Para, Ferro, anti Ferro, ferri magnetism, Curie Temperature, Hysteresis and its significance, soft and hard magnetic materials, ferrites, silicon steel, their properties and uses, magnetic resistance.Fabrication MaterialsPlanar process, lithography, etching, spin coating, sputtering, CVD, carbon nanotube, nanowires (synthesis, properties and applications), Material characterization techniques such as scanning electron microscopy, transmission electron microscopy, Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry.e Books: ekker, Electrical Engineering Materials, PHI.hulkar & S.Thiruvegada, An introduction electrical Engg Materials, S. Chand & Co.sap, Principles of Electronic Materials & Devices, TMH	Classification of Materials Metals and alloys, polymers, conducting materials, characteristic of good conductors, commonly used conducting materials, smart materials, fuel cell, super alloys, memory alloys, degradation of materials, 8 Dielectrics, Insulating and Conducting & Dielectric Materials - Properties of insulating materials, classification of insulating materials, Piezoelectricity, Ferro electricity, Principle and Applications of Optical Fiber, Materials of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices, photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD. 8 Magnetic Materials Basic concepts and definitions, origin of magnetism, dia, Para, Ferro, anti Ferro, ferri magnetism, curie Temperature, Hysteresis and its significance, soft and hard magnetic materials, ferrites, silicon steel, their properties and uses, magnetic resistance. 8 Fabrication and Materials Planar process., lithography, etching, spin coating, sputtering, CVD, carbon nanotube, a scanning electron microscopy, transmission electron microscopy, Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry. 8 e Books: ekker, Electrical Engineering Materials, PHI. 1 tulkar & S. Thiruvegada, An introduction electrical Engg Materials, S. Chand & Co. san, introduction electrical Engg Materials, S. Chand & Co. sap. Principles of Electronic Materials & Devices, TMH aroff, Introduction to Solids, Mc Grow Hill Company 1					

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2		1									2	3		1		
CO2	3	2											3	3		1		
CO3	3	2		2								3	1	3		1		
CO4	2	1										3	2	2		2		
CO5	3		3									1	3	3				

Effective from Session:	Effective from Session: 2023-24												
Course Code	EE224 (DE-I)	Title of the Course	Illumination Engineering	L	Т	Р	С						
Year	2 nd	Semester	4 th	3	1	0	4						
Pre-Requisite	None	Co-requisite	None										
Course Objectives	 To und To und To und 	erstand the basics of Illu erstand the Illumination erstand Indoor Lighting erstand the Outdoor Lig erstand the Modern Tre	Systems and Indoor Illumination Design hting										

Course Outcomes

CO1	Understanding of Basics of Illumination Engineering
CO2	Understanding of Illumination Systems and its deign considerations
CO3	Understanding and implementation capability of indoor illumination design and scheme for residential, educational, medical and commercial
	installations
CO4	Understanding and implementation capability of outdoor illumination design and scheme
CO5	Understanding and implementation capability of Modern trends in Illumination such as LED, Organic Lighting System, Laser and Optic Fiber

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Illumination Engineering Basics	Introduction- Necessity of illumination, Physical processes employed in the artificial sources. Eye and Vision, Laws of illumination, Light: Production, physics of generation, Photometry: Properties, quantification and measurement, Glare, Effect of Glare, Glare Indices, Color rendering index	8	CO1							
2	Illumination Systems	Luminaries: Types, Design consideration, Standard (IEC598), Lighting fixtures, Construction and working of various types of Lamps, Electric control of Light sources using Ballast	8	CO2							
3	Indoor Illumination Design: Residential, Educational institute, Hospitals and commercial Installation.										
4	Outdoor Lighting	Factors consideration on designing of outdoor illumination scheme, Sports lighting, Flood lighting, Road lighting, Lighting for advertisement/Holding, Lighting calculation, Lighting applications.	8	CO4							
5	Modern Trends in Illumination	LED Luminary designs, Intelligent LED fixtures, Natural lighting conductor, Organic lighting system, Laser characteristics, Features and applications, Optical fiber constructionas light guide, Features and applications.	8	CO5							
	ce Books:										
1. D.C. I	Pritchard Lighting, Rout	ledge, 2018									
2. H.Par	tab, "Art and Science of	Electrical Energy" Dhanpat Rai & Sons, 2017									
3. Craig	Di Louie, "Advanced L	ighting Controls: Energy Savings, Productivity, Technology and Applications", CRC Press, 2017	7								
4. Kao C	4. Kao Chen, "Energy Management in Illuminating Systems", Carlsons Consulting Engineers, San Diego, California, USA, CRC Press, 2009										
5. Mark	Stanley Rea, "IESNA L	ighting Handbook", Illuminating Engineering Society of North America, 2000									
6. S. M.	Chaudhari, "Illuminatio	n Engineering", Tech Knowledge Publications, 2019									
e-Learn	ing Source:										

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PS O CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO 1	3	3	1	2	3							2	3	2				
CO 2	3	3	1	2	3							2	3	2				
CO 3	3	1	1		3							2	3					
CO 4	3	1	1		3							2	3					
CO 5	3	1	1		3							2	3					

Effective from Session: 2016	5-17						
Course Code	EE 210	Title of the Course	Electrical Measurement Lab	L	Т	Р	С
Year	II	Semester	IV	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	• To	understand and experim	ent with the measurement of electrical quantity by DC Bridg ent with the measurement of electrical quantity by AC Bridg ent with the calibration of voltmeter				
	• To	understand and experim	ent with the calibration of ammeter				

		Course Outcomes
ſ	CO1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by DC Bridge; contribute in related
		development
ſ	CO2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by AC Bridge; contribute in related development
Ī	CO3	Adopt, perform, analyze and implement the methods of calibration of voltmeter; contribute in related development
	CO4	Adopt, perform, analyze and implement the methods of calibration of ammeter; contribute in related development

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO					
1		Measurement of Low Resistance by Kelvin's Double Bridge	2	1					
2		Measurement of Self-Inductance by Maxwell's Bridge	2	2					
3		Measurement of Self-Inductance by Hay's Bridge	2	2					
4									
5									
6		Measurement of Frequency by Wein's Bridge	2	2					
7		Calibration of Voltmeter	2	3					
8		Calibration of Ammeter	2	4					
Referen	ce Books:								
1. V.Del	toro, "Principle of Elect	trical Engg." PHI, 2009							
2. M.A N	Mallick, Dr. I. Ashraf, "	Fundamental of Electrical Engg," CBS Publishers, 2010.							
3. A. Hu	ssain, "Basic Electrical	Engg" Dhanpat Rai & sons, 2007							
4. I J Na	grath,"Basic Electrical	Engg", TMH, 2010.							
e-Lear	ning Source:								
	0								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2022	2-23								
Course Code	EE 212	Title of the Course	Electromechanical Energy Conversion II Lab	L	Т	Р	С		
Year	Π	Semester	IV	0	0	2	1		
Pre-Requisite	None	one Co-requisite None							
Course Objectives	• Kn	owledge of single p	rating principle of DOL and Star Delta Starters bhase and three phase squirrel cage / slip ring ind to control the speed of three phase AC motors	uctio	n mo	tor			
	<u> </u>		of AC machines on the basis of external charact	eristi	с				

	Course Outcomes
CO1	Analyze and implement different starters for starting AC motors
CO2	Analyse and apply the different speed control methods for AC motors
CO3	Analyse, test and determine the performance of single phase induction motor
CO4	Apply the knowledge practically to determine the performance of AC machines under no load and loading condition

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study DOL starter and star delta starter.	2	1
2		To study of slip ring induction motor.	2	1
3		To study of single phase capacitor start induction motor and observe (a) effect of capacitor on starting and running (b) reversal of direction of induction motor	2	3
4		To perform no load load test and block rotor test on a single phase inductionmotor	2	2
5		To study of synchronization of an alternator by two bright and one dark lamp method	2	4
6		To study speed control of 3 phase SCIM by voltage variation method	2	2
7		To study speed control of 3 phase SCIM by frequency variation method	2	3
8		Parallel operation of AC Generators.	2	4
	ce Books:	f Electrical Energy DILL 2000	ł	
	· •	f Electrical Engg." PHI, 2009		
		nraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
		ctrical Engg" Dhanpat Rai & sons, 2007		
4. I J N	agrath,"Basic Electric	cal Engg" ,TMH, 2010.		
e-Lean	rning Source:			
IIT -R	loorkee Virtual Labs(h	nttps://www.vlab.co.in/participating-institute-iit-roorkee)		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО	1	0	2									2	1	2	2			
CO1	1	2	3									3	1	2	3			
CO2	1	2	3									3	1		3			
CO3	1	2	3									3	1		3			
CO4	1	2	3									3	1		3			

Effective from Session	1: 2022-23												
Course Code	EE 214	Title of the Course	Numerical Analysis and Applications Lab	L	Т	Р	C						
Year	II	Semester	IV	0	0	2	1						
Pre-Requisite		Co-requisite											
 To provide suitable and effective methods called Numerical Methods, for obtaining approximate representative numerical results of the problems. To solve problems in the field of applied mathematics, theoretical physics and engineering which requires compute of numerical results using certain raw data. 													
Course Objectives													
	interpolation an	1	ing roots of equations, solving systems of linear algebra umerical integration & differentiation, solution of different problems.		,		ry						

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of simulation and programming of roots of equation by MATLAB; contribute in related development
CO2	Adopt, perform, analyze and implement the methods of simulation and programming of linear algebraic equation by MATLAB; contribute in related development
CO3	Adopt, perform, analyze and implement the methods of simulation and programming of numerical integration and differentiation by MATLAB; contribute in related development
CO4	Adopt, perform, analyze and implement the methods of simulation, programming and plot of equation by MATLAB; contribute in related development

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	Study the overview of MATLAB and basic mathematical operations.	2	1
2	Find the determinants and inverse of given matrix [A] using MALAB.	2	1
3	Solve the linear algebraic equations by using MATLAB. 5x=3y-2z+10; 8y+4z=3x+20; 2x+4y-9z=9	2	2
4	Find the Eigen value & Eigen vectors of a given matrix A by using MATLAB.5x- 3y+2z=10; -x+8y+4z=20; 2x+4y-9z=9	2	2
5	Plot the raw data to do fit linear curve and display the equation by using MATLAB. X= [5 10 20 50 100]Y= [15 33 53 140 301]	2	2,4
6	Solve the transcendental equation $Sin x=e^{x}-5$ & plot it by using MATLAB.	2	2,4
7	Evaluate function by Simpson's 1/3 rule using MATLAB.	2	3
8	Evaluate function by Simpson's 3/8 rule using MATLAB.	2	3
9	Find the roots & plot the error of the given $f(x) = x^3 - x - 1$ by Bisection method using MATLAB.	2	2,4
10	Find the root of the following equation's using Gauss Seidel Method.20x+y- 2z=17; 3x+20y-z=18; 2x-3y+20z=25	2	2
Reference	e Books:		
1. Josef St 2013.	toer and R. Bulirsch, "Introduction to Numerical Analysis" Springer Science & amp; Business Media, ISBN 978-1-47575	592- 3, Thi	rd Edition,

2. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.

3. C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

https://drive.google.com/drive/folders/1i52ieww0iq_YIYw7 7lX4q6RGHpP97B_u?usp=sharing

PO-PSO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	3	3	2									1	3	1	3
CO2	1	3	3	1	1								1	3	1	3
CO3	2	1	3	3	3	1			1		1	1	2	3	2	2
CO4	3	2	1	1	3	1		2	1		1	1	2	3	2	2

Course Code	EE 216	Title of the Course	Electrical Simulation Lab	L	Т	Р	C
Year	II	Semester	IV	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	 electrical engine Hands-on MAT MATLAB envin Circuit Analysis 	ering. LAB Skills: Develop pronment, using built-in and Design: Apply circtors, and operational a	Students should grasp the fundamental concepts of simulati roficiency in using MATLAB for electrical simulations, incl functions, creating scripts, and utilizing MATLAB's graphic cuit analysis principles to solve complex electrical circuits in mplifiers. Understand circuit behaviors, transient and steady	uding al cap nvolvi	underst abilities ng resis	tanding s. stors,	the

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of simulation techniques used in electrical engineering by MATLAB.
CO2	Adopt, perform, analyze and implement the methods and develop proficiency in using MATLAB for electrical simulations, including understanding the MATLAB environment, using built-in functions, creating scripts byMATLAB
CO3	Adopt, perform, analyze and implement the methods of simulation and programming of numerical integration and differentiation by MATLAB; contribute in related development
CO4	Adopt, perform, analyze and implement the methods of simulation, and plot of electrical circuits by MATLAB; contribute in related development

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	To Study the elements, Components & blocks used in MATLAB/Simulink.	2	1
2	To realize an active circuit using MATLAB Simulink and obtain current and voltage at each branches.	2	1
3	To realize a half wave rectifier circuit using MATLAB/Simulink.	2	2
4	To realize a full wave rectifier circuit using MATLAB/Simulink.	2	2
5	To verify Thevenin's theorem using MATLAB/Simulink.	2	2,4
6	To verify Norton's theorem using MATLAB/Simulink.	2	2,4
7	To verify Maximum power transfer theorem using MATLAB/Simulink.	2	3
8	To verify Superposition theorem using MATLAB/Simulink.	2	3
9	To study frequency response of series RLC circuit using MATLAB/Simulink.	2	2,4
10	Development and simulation of program using MATLAB/Simulink.	2	2
Doforon	Pooks:	1	1

Reference Books:

1. Josef Stoer and R. Bulirsch, "Introduction to Numerical Analysis" Springer Science & amp; Business Media, ISBN 978-1-47575-592-3, Third Edition, 2013.

2. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.

3. C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

https://drive.google.com/drive/folders/1i52ieww0iq_YIYw7 7lX4q6RGHpP97B_u?usp=sharing

PO-PSO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	3	3	2									1	3	1	3
CO2	1	3	3	1	1								1	3	1	3
CO3	2	1	3	3	3	1			1		1	1	2	3	2	2
CO4	3	2	1	1	3	1		2	1		1	1	2	3	2	2

Effective from Session: 2022	Effective from Session: 2022-23														
Course Code	EE301	Title of the Course	CONTROL SYSTEMS	L	Т	Р	С								
Year	3 rd	Semester	5 th	3	1	0	4								
Pre-Requisite	None														
Course Objectives	 To To To 	get the knowledge of fir gain information of the evaluate the stability of	usfer function and mathematical modeling of systems. st order and second order system. system. the system using Nyquist stability criterion and also study of state space analysis.												

	Course Outcomes								
CO1	To learn the concept of transfer function and mathematical modeling of systems.								
CO2	To get the knowledge of first order and second order system.								
CO3	To gain information of the system.								
CO4	To evaluate the stability of the system using Nyquist stability criterion								
CO5	To design the compensator and also study of state space analysis.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Input/ Output Relationship	Introduction to control system, Open and closed loop control system, Mathematical modeling of physical systems, Transfer function of electrical and mechanical system, Analogous systems, Block Diagram Reduction Algebra and signal flow graph, Mason's gain formula.	8	CO1
2	Time Domain Analysis	Time domain criteria; Test Signals; Transient and steady state response of first and second order feedback systems; Performance indices; Response analysis with proportional, Proportional- Derivative (PD) controller, Proportional-Integral (PI) controller and Proportional- Integral –Derivative (PID) controller.	8	CO2
3	Stability, Algebraic Criteria and Frequency response Analysis	Asymptotic and conditional stability, Routh Hurwitz criterion, Frequency response analysis, Correlation between time and frequency domain specifications, Resonant peak, Resonant frequency, Bandwidth, Cutoff frequency, Polar plots, Bode plots.	8	CO3
4	Root Locus Technique and Stability in Frequency Domain	The root locus concepts, Construction of root loci, Nyquist stability criterion, Relative stability, Gain margin, Phase margin, Constant M and N circles.	8	CO4
5	Introduction to Design and State variable technique	Design through compensation Techniques; Realization of Lag, Lead, And Lag-Lead compensation; Design of closed loop control system using root locus and bode plot compensation. Introduction to State variable analysis, State space representation, State equations, State transfer matrices, Controllability and observability.	8	CO5
	ce Books:		•	
		ol system", Wiley, 9th Edition, 2014.		
		ontrol system Engineering", New Age International, 4th Edition, 2015.		
3. K. Og	gata, "Modern Control E	ngg.", PHI, 4th Edition, 2002.		
4. S. K.	Bhattacharya, "Control	system Engg.", Pearson Education, 2nd Edition, 2008.		
5. S. Ha	san Saeed, "Automatic o	control system", Kataria and sons, New Delhi, 8th Edition, 2016		
e-Lear	rning Source:			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSC	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
СО	-	2		4											2			
CO1	3	2		I									2	I	2			
CO2	3	2		1									3	2	3			
CO3	3	2										1	3	1	2			
CO4	1	3		2								1		2				
CO5	2	2	3									1	1		2			

Course CodeEE303Title of the CoursePOWER ELECTRONICSLTPCYear3rdSemester5th3104Pre-RequisiteNoneCo-requisiteNoneII04or To learn the concept of transfer function and mathematical modeling of systems.To get the knowledge of first order and second order system.IIIIITo gain information of the system.To evaluate the stability of the system using Nyquist stability criterionIIII	Effective from Session: 2017	/-18						
Teal 5 6 6 7 <th7< th=""> <th7< th=""></th7<></th7<>	Course Code	EE303	Title of the Course	POWER ELECTRONICS	L	Т	Р	С
• To learn the concept of transfer function and mathematical modeling of systems. • To get the knowledge of first order and second order system. • To gain information of the system.	Year	3 rd	Semester	5 th	3	1	0	4
Course Objectives • To get the knowledge of first order and second order system. • To gain information of the system.	Pre-Requisite	None						
 To design the compensator and also study of state space analysis. 	Course Objectives	 To To To 	get the knowledge of fir gain information of the evaluate the stability of	rst order and second order system. system. the system using Nyquist stability criterion	-			

Course Outcomes

CO1	Understand and analyze the concept, design, technique, advancement and application of Bipolar junction transistor, Power Metal oxide semiconductor field effect transistor, Insulated gate bipolar junction transistor, operation of Silicon controlled rectifier (SCR), Firing circuits of
	Thyristor, Turn on methods of a Thyristor and Thyristor turn-off process.
CO2	Understand and analyze the concept, design, technique, advancement and application of Protection of Thyristor, Series and parallel operation of
	SCR, Gate turn off (GTO) thyristor. Understand and analyze the concept and knowledge advancement in Gate characteristic of an SCR, Dynamic
	characteristics of SCR, Two transistor analogy, Rating of an SCR
CO3	Understand and analyze the concept, design, technique, advancement and application of single phase half wave and full wave controlled rectifiers
	with different types of load, Effect of source impedance on the performance of full wave converter, Dual converter, three phase converters and
	cyclo-converters
CO4	Understand and analyze the concept, design, technique, advancement and application of Single phase bridge inverters (half and full wave), Pulse
	width modulation (PWM) inverters, Series inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.
CO5	Understand and analyze the concept, design, technique, advancement and application of choppers, chopper circuits, Multi quadrant choppers,
	Commutation of choppers, Switched mode power supplies.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Power Transistors I	Classification of power transistors, Bipolar junction transistor (BJT), Power Metal oxide semiconductor field effect transistor (MOSFET), Insulated gate bipolar junction transistor (IGBT), Basic principle of operation of Silicon controlled rectifier (SCR), Voltage vs Current characteristics of SCR, Firing circuits of Thyristor, Turn on methods of a Thyristor, Thyristor turn-off process.	8	CO1
2	Power Transistors II	Protection of Thyristor, Gate characteristic of an SCR, Dynamic characteristics of SCR, Series and parallel operation of SCR, Two transistor analogy, Rating of an SCR, Gate turn off (GTO) thyristor.	8	CO2
3	Controlled Rectifiers	Controlled Rectifiers Analysis of single phase half wave and full wave controlled rectifiers with different types of load, Effect of source impedance on the performance of full wave converter, Dual converter, Introduction to three phase converters and cyclo-converters.	8	CO3
4	Classification of inverters	Classification of inverters, Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.	8	CO4
5	Choppers	Principle of choppers, Analysis of chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched mode power supplies.	8	CO5
Referen	ce Books:			
1.M. H.	Rashid, "Power Electron	nics: Devices, Circuits and applications", Pearson, 4th edition, 2014.		
2. J. M	Jacob, "Power Electroni	cs: Principles and applications", Thomson Press (India) Ltd; 1st edition, 2006.		
3. Vedar	n Subramanium, "Powe	r Electronics: Devices, Converters, Application", New Age Int. (P) Ltd., 2nd edition, 2012.		
4. Ned N	Johan, "Power Electron	ics: Converters, Applications and Design", Wiley, 3rd edition, 2002.		

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PS	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	2	1	3	3	2	2	2	1	1	2	3	2	3			
CO2	3	3	2	1	3	3	2	2	2	1	1	2	3	2	2			
CO3	3	3	2	1	3	3	2	2	2	1	1	2	2	2	2			
CO4	3	3	2	1	3	3	2	2	2	1	1	2	2	3	2			
CO5	3	3	2	1	3	3	2	2	2	1	1	2	3	3	2			

Effective from Session: 2022	ear 3 rd Semester 5 th 3 1 0														
Course Code	EE305 Title of the Course DIGITAL CIRCUITS AND SYSTEMS L T P 3rd Semester 5 th 3 1 0 None Co-requisite None Image: Constant of the course of														
Year	3 rd	Semester	5 th	3	1	0	4								
Pre-Requisite	None	Co-requisite	None												
Course Objectives	 Became fan truth table, nu To analyze To understa To understa To understa To understa To understa To understa 	niliar with the digital sig umber systems, codes, and logic processes and imp nd competence in Comb nd concepts of sequenti nd competence in analy nd characteristics of me	nal, positive and negative logic, Boolean algebra, logic gate nd their conversion from one to others. lement logical operations using combinational logic circuits binational Logic Problem formulation. al circuits and to analyze sequential systems in terms of state sis of synchronous and asynchronous sequential circuits. mory and their classification. nable Devices, PLA, PAL, PLD and FPGA and implement of	s, logi e macł	cal vari	ables, tl	10								

	Course Outcomes
C01	Convert different type of codes and number systems which are used in digital communication and computer systems. Develop a digital logic and apply it to solve real life problems.
CO2	Employ the codes and number systems converting circuits and Compare different types of logic families which are the basic unit of different types of logic gates in the domain of economy, performance and efficiency.
CO3	Analyze, design and implement combinational and sequential logic circuits.
CO4	Analyze different types of digital electronic circuit using various mapping and logical tools and know the techniques to prepare the most simplified circuit using various mapping and mathematical methods.
CO5	Design different types of with and without memory element digital electronic circuits for particular operation, within the realm of economic, performance, efficiency, user friendly and environmental constraints. Classify different semiconductor memories. Assess the nomenclature and technology in the area of memory devices and apply the memory devices in different types of digital circuits for real world application.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Number system, codes and Minimization Techniques	Decimal, Binary, Hexadecimal, Octal Number systems and their Conversions, Arithmetic operations, subtraction using 1's and 2's compliment, Binary coded decimal, Excess-3 Codes, Gray Codes. Different types of Logic Gates and their implementation, Standard representation of logic functions- SOP and POS forms, simplification of switching functions- K Map	8	CO1
2	Logic Families	Introduction to different logic families. RTL, DTL,TTL, MOS. TTL inverter – circuit description and operation, CMOS inverter – circuit description and operation, design of gates using TTL and CMOS circuits, Electrical characteristics of logic gates	8	CO2
3	Combinational logic systems, Modules and their applications	Basic logic operation and logic gates, Decoder, Encoder, Multiplexer, De-multiplexer, Parity circuits and comparators, Arithmetic modules- Half Adder, Full Adder, Half Subtractor, Full Subtractor, Carry Look Ahead Adder, Serial Adder, BCD adder	8	CO3
4	Sequential logic systems, Modules and their applications	Sequential Circuits- Latches and Flip-flops, Transition, Excitation table, Excitation maps and equations, Counters, Shift registers, 555 timers, Multivibrator.	8	CO4
5	Memory and Programmable logic devices	Read only memory, read/write memory- SRAM and DRAM. PLAs, PALs and their application, Sequential PLDs and their application, Introduction to Field Programming Gate Array.	8	CO5
	nce Books:			
1. R.P. J	Jain, "Modern Digital El	ectronics", TMH, 4th Edition, 2010.		
2. Morri	is Mano, "Digital Desig	n", PHI, 3rd Edition, 2014.		
3. R. J. 7	Tocci, "Digital Systems"	', PHI, 4th Edition, 2016.		
4. Malvi	ino and Leach, "Digital	principles and applications", TMH, 8th Edition, 2014.		
5. J. M.	Yarbrough, "Digital Log	gic-Application and Design", PWS Publishing, 5th Edition, 2006		
6. B. S.	Nai, " Digital Electronic	es and Logic Design", PHI, 7th Edition, 2012		
e-Lea	rning Source:			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	2	2		1	2	1		1		1	2	2				
CO2	2	3		2	2	1	3			1	1	1	2	3	2			
CO3	3	3	3	2	2						1	1	3	3	3			
CO4	2	3	3	2		2	2			2	3		2	2	3			
CO5	1	2	2	2	2	2		3			1		2	2	2			

Effective from Session: 2017	7-18												
Course Code	EE307	Title of the Course	POWER SYSTEM I	L	Т	Р	С						
Year	3 rd	Semester	5 th	3	1	0	4						
Pre-Requisite	None	None Co-requisite None											
Course Objectives	 To To To 	get knowledge of induc attain knowledge of Con study about Mechanical	r System Components and Transmission Lines tance and capacitance of Over-Head Transmission Lines rona and Overhead line Insulators Design of transmission line and Insulated cables Electrical Design of Transmission Line and Neutral groundi	ng									

	Course Outcomes								
CO1	Understand the Power System Components and Transmission Lines								
CO2	nalyse the inductance and capacitance of Over-Head Transmission Lines								
CO3	Understand the phenomenon of Corona and Overhead line Insulators								
CO4	Having knowledge of Mechanical Design of transmission line and Insulated cables								
CO5	Design Electrical Transmission Line and Neutral grounding								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Power System Components and Transmission Lines	Single line Diagram of Power system, Brief description of Power System Elements: Synchronous machine, transformer, transmission line, busbar, circuit breaker and isolator. Different kinds of supply system and their comparison, Choice of transmission voltage. Transmission Line Configurations, Types of conductors, Resistance of line, Skin effect, Kelvin's law, Proximity effect.	8	CO1
2	Head Transmission Lines	Calculation of inductance and capacitance of single phase, three phase, single circuit and double circuit transmission lines; Representation and performance of short, medium and long transmission lines; Ferranti effect; Surge impedance loading.	8	CO2
3	Corona and Overhead line Insulators	Phenomenon of corona, Corona formation, Calculation of potential gradient, Corona loss, Factors affecting corona, Methods of reducing corona and interference, Electrostatic and electromagnetic interference with communication lines. Types of insulators and their applications, Potential distribution over a string of insulators, Methods of equalizing the potential, String efficiency.	8	CO3
4	Mechanical Design of transmission line and Insulated cables	Centenary curve, Calculation of sag & tension, Effects of wind and ice loading, Sag template. Type of cables and their construction, Dielectric stress, Grading of cables, Insulation resistance, Capacitance of single phase and three phase cables, Dielectric loss, Heating of cables.	8	CO4
5	Electrical Design of Transmission Line and Neutral grounding	Design consideration of Extra High Voltage (EHV) transmission lines, Choice of voltage, Number of circuits, Conductor configuration, Insulation design and selection of ground wires. Necessity of neutral grounding, Various methods of neutral grounding, Earthing transformer, Grounding practices.	8	CO5
Referen	ce Books:			
1. W. D.	. Stevenson, "Element o	f Power System Analysis", McGraw Hill, 4th revised edition,1982.		
2. C. L.	Wadhwa, "Electrical Po	wer Systems", New age international Ltd , 6th Edition, 2010.		
3. L.P. S	Singh, "Advance Power	System Analysis & Dynamics", New Academic Science, 6th edition, 2012.		
4. Ashfa	q Hussain, "Power Syst	tem", CBS Publishers and Distributors, 5th Edition, 2010.		
e-Lear	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-															
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P
CO															
CO1	3	2	1	1								1	2	1	2
CO2	3	3		1								1	2	3	2
CO3	3	3	1	2								1	2	3	2

CO3

CO4

CO5

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

PSO4

PSO5

PSO6

PSO7

Effective from Session: 2022	2-23						
Course Code	EE323	Title of the Course	PROCESS INSTRUMENTATION	L	Т	Р	С
Year	3 rd	Semester	5 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Uno Stud App 	derstanding of different dy and analysis of feedb plications and design of	cess ant its characteristics. control loops used in process. oack control system and its applications. multi-loop control system. ltivariable control systems.				

	Course Outcomes
CO1	Know about different process ant its characteristics.
CO2	Understand different control loops used in process
CO3	Use feedback control system.
CO4	Design of multi-loop control system.
CO5	Design of multivariable control systems.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Process characteristics	Incentives for process control; Process Variables types and selection criteria; Process degree of freedom; The period of Oscillation and Damping; Characteristics of physical System: Resistance, Capacitance and Combination of both; Elements of Process Dynamics; Types of processes: Dead time, single and multi-capacity, self-regulating and non self-regulating, interacting and non interacting, linear / non-linear; Selection of control action.	8	CO1
2	Analysis of Control Loop	Steady state gain; Process gain; Valve gain; Process time constant; Variable time Constant; Transmitter gain; Linearizing an equal percentage valve; Variable pressure drop; Analysis of Flow Control, Pressure Control, Liquid level Control, Temperature control; Single Line Process Controller: features, faceplate, functions; Multi Line Process Controller: features, faceplate, functions; Comparison of Single Line Process Controller and Multi Line Process Controller. Scaling: Types of scaling, Examples of scaling.	8	CO2
3	Feedback Control	Basic principles, Elements of the feedback Loop, Block Diagram, Control Performance Measures for Common Input Changes, Selection of Variables for Control Approach to Process Control. Factors in Controller Tuning; Determining Tuning Constants for Good Control Performance; Correlations for tuning Constants; Fine Tuning of the controller tuning Constants; The performance of feedback Systems; Practical Application of Feedback Control: Equipment Specification, Input Processing, Output Processing.	8	CO3
4	Multi-Loop System	Cascade control; Feed forward control; Feedback-feed forward control; Ratio control; Selective Control; Split range control: Basic principles, Design Criteria, Performance, Controller Algorithm and Tuning, Implementation issues, Examples and any special features of the individual loop and industrial applications	8	CO4
5	Multivariable Control	Concept of Multivariable Control, Interactions and its effects; Modeling and transfer functions; Influence of interaction on the possibility of feedback control; Important effects on multivariable system behavior; Relative Gain Array; Effect of interaction on stability and multi-loop control system; Multi-loop control performance through loop paring; Tuning; Enhancement through decoupling; Single loop enhancements.	8	CO5
	nce Books:			
		tic Process Control", Wiley India Edition, Wiley India Pvt. Ltd, 2009		
	•	trol Systems", McGraw Hill, 4th Edition, 1996.		
		of Process Control Theory", International Society of Automation, 3rd Edition, 2012.		
4. G. D.	Considine, "Process Ins	strumentation and control Handbook", McGraw Hill, 5th Edition, 1993		
e-Lea	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	1	1	1	1	3	1				1	3	3	3	1	3		
CO2	3	2	2	1	3	2	1				1	2	2	2	1	3		
CO3	3	2	2	1	3	3	3				1	3	1	1	2	2		
CO4	3	2	3	2	3	3	3				1	3	2	1	2	3		
CO5	3	3	3	3	3	3	2				1	3	3	3	3	3		

Effective from Session:								
Course Code	EE 302	Title of the Course	Control system Lab	L	Т	Р	С	
Year	III	Semester	V	0	0	2	1	
Pre-Requisite	Co-requisite							
Course Objections			ction and mathematical modeling of mechanical system r and second order system.	n.				
Course Objectives		evaluate the stability design the compensat	of the system using different frequency domain analystor	sis too	ols			

	Course Outcomes								
CO1	To learn of Transfer function and mathematical modeling of mechanical system.								
CO2	analyse the first order and second order system.								
CO3	To evaluate the stability of the system using different frequency domain analysis tools								
CO4	To design the compensator and analyse the controller performance								

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1	Input/ Output Relationship	To study the performance characteristics of a DC motor speed control system. 1) Open loop 2) Close loop	2	1
2	Time Domain Analysis	To study the steady state behavior of type 0 system.	2	2
3	Introduction to Compensator design	To study the phase lag network.	2	4
4	Controller performance analysis	 To study the performance of various types of controller used to control the temperature of an oven. ON /OFF control Proportional control. 	2	4
5	Time Domain Analysis	To study the Transient response of a series RLC circuit.	2	2
6	Input/ Output Relationship	To study and plot speed vs voltage characteristic of the dc servo motor.	2	1
7	Controller performance analysis	To simulate a DC motor (Armature control) system and draw the characteristic of the angular velocity using MATLAB/ SIMULINK	2	4
8	Frequency domain analysis	To check the sensitivity of the system using MATLAB at different gain for a given transfer function	2	3
	ce Books:			
		system", Wiley, 9th Edition, 2014.		
		trol system Engineering", New Age International, 4th Edition, 2015.		
K. Ogat	ta, "Modern Control Eng	rg.", PHI, 4th Edition, 2002.		
S. K. B	hattacharya, "Control sy	stem Engg.", Pearson Education, 2nd Edition, 2008.		
e-Lear	ning Source:			
https://	/nptel.ac.in/courses/107106	081		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	1	2	3							2	2	2		3	3	3
CO2	2	3	1	2	3							2	2			3	3	3
CO3	3	1	3	2	3							2	2			3	3	1
CO4	3	1	1	1	3							2	2			3	3	1

Effective from Session: 2017	7-18						
Course Code	EE 304	Title of the Course	Power Electronics lab	L	Т	Р	С
Year	3 rd	Semester	5 th	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	• To • To	understand and experim understand and experim					

	Course Outcomes										
CO1	Adopt, perform, analyze and implement and to study the various components of power electronics devices.										
CO2	Adopt, perform, analyze and implement and to study the RC and UJT trigger circuit of SCR.										
CO3	Adopt, perform, analyze and implement and to study the working and characteristics of solar cell and basic components and circuit diagram										
	of electronic fan regulator /light dimmer										
CO4	Adopt, perform, analyze and implement the to study the SMPS and plot the V-I characteristic and single phase bridge inverter.										

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study the various components of power electronics devices.	2	1
2		To study the characteristics of SCR and plot the V-I graph.	2	1
3		To study the RC trigger circuit of SCR.	2	2
4		To study the UJT trigger circuit of SCR.	2	2
5		To study the phase control circuit of SCR.	2	2
6		To study the working and characteristics of sollar cell.	2	3
7		To study the basic components and circuit diagram of electanic fan regulator /light dimmer.	2	3
8		To study the SMPS and plot the V-I characteristic.	2	4
9		To study the single phase bridge inverter with resistive -capcitive load.	2	4
10		To study the fully controlled bridge rectifier with resistive load.	2	4
11		To study the SCR based step-down chopper with resistive load.	2	4
Referen	nce Books:			
1.	M. H. Rashid, "Power E	lectronics: Devices, Circuits and applications", Pearson, 4th edition, 2014.		
2.	J. M. Jacob, "Power Elec	ctronics: Principles and applications", Thomson Press (India) Ltd; 1st edition, 2006.		
3.	Vedam Subramanium, "	Power Electronics: Devices, Converters, Application", New Age Int. (P) Ltd., 2nd edition, 2012.		
4.	Ned Mohan, "Power Ele	ctronics: Converters, Applications and Design", Wiley, 3rd edition, 2002.		
e-Lea	rning Source:			
	0			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Sessi	on: 2017-18						
Course Code	EE306	Title of the Course	Digital Circuits & Systems Lab	L	Т	Р	С
Year	III	Semester	5 th	0	0	2	1
Pre-Requisite		Co-requisite	EE305				
Course Objectives	• To know the	e basic knowledge of digita concepts of Combinational d the concepts of flip-flops,		gital el	ectroni	cs circu	its.

	Course Outcomes										
CO1	Identify relevant information to supplement to the Digital Circuits & Systems (EE305) course.										
CO2	Define different types of logic gates, identify their ICs, verify their truth table. Derive adder, subtractor, encoder, decoder, and counters using logic gates.										
CO3	Illustrate realization of Boolean expression in SOP form and design it using logic gates.										
CO4	Design and implement combinational logic circuits.										
CO5	Design and implement sequential logic circuits.										

Exp. No.	Topic of Experiment	Content of Experiment	Contact Hrs.	Mapped CO
1	Realization of gate	Realize OR, NOR, XOR, XNOR gates using NAND gate and verify its truth table.	2	1,2
2	Comparator	Design and study of 1-bit Magnitude Comparator.	2	1,2,4
3	Code converter	Design and test a CODE converter from decimal number to binary number. Use diode and LED's. Measure voltage drops across the diodes, LED's and resistor R. Find the current flowing through LED.	2	1,2,4
4	Adder	Assemble the half Adder circuit using X-OR and AND gates. Verify the truth table for Half Adder. Using two Half Adder and an OR gate, assemble Full Adder circuit, verify truth table. Express sum and carry with all the minterms in minimization possible.	2	1,2,3,4
5	Subtractor	Study and verify 4-bit adder / subtractor circuit using IC7483 and IC7486.	2	1,2
6	Encoder/ Decoder	Use a BCD to 7 segment decoder 0-9 digits. Study the 7 segment LED display. Is it common anode or common cathode type? What is a suitable value or R for bright display of digit? Design a BCD to 7 segment decoder using NAND gates. Use K-Maps and don't care terms to implement the design with minimum number of gates.	2	1,2,3,4
7	XOR gate IC-module (7486)	 Verify the truth table and record voltage levels. Design a 3-input X-OR gate using 2-input X-OR gate. Obtain its truth table. F₁= A⊕ B⊕C Design a 3-input X-NOR gate using 7486 &7402. Obtain its truth table. F₂= A⊖B⊖C Find expressions of F1 and F2 as Sum of product (SOP) and compare F₁ and F₂. 	2	1,2,4
8	Flip Flops	Design and test J-K Master-Slave F/F IC 74LS76. Make special observation of edge triggering present and clear. Make and test D-F/F and T-F/F and verify its truth table.	2	1,5
9	Counter	Design MOD-10 Counter using Master – Slave F/F (7476) and logic gates (7400 & 7408). Verify truth table.	2	1,3,5
10	Register	Design of Shift Registers.	2	1,5

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-																
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3		3	3	2				2	1	3	2	1	
CO2	2	2	1		2		1					1	3	1	1	
CO3	2	2	2	2		1				1	1	1	1	2	1	
CO4	3	2	2	3				2	1	2		2	2	3	1	
CO5	2	3	3	2				1	2	2		2	2	3	1	

Effective from Session:												
Course Code	EE324	Title of the Course	Process Instrumentation Lab	L	Т	Р	С					
Year	III	Semester	5 th	0	0	2	1					
Pre-Requisite		Co-requisite										
Course Objectives	 To To To 	understand the charao understand the charao understand the charao	iment with the IC Temperature Sensor (LM335). cteristics of Platinum RTD cteristics of K Type Thermocouple. cteristics of NTC Thermistor. ng principle of Strain gauge.									

	Course Outcomes
CO1	Adopt, perform, analyze the use of IC Temperature Sensor (LM335).
CO2	Adopt, perform, analyze the use of Platinum RTD.
CO3	Adopt, perform, analyze the use of K type Thermocouple
CO4	Adopt, perform, analyze the use of NTC Thermister
CO5	Adopt, perform, analyze the use of Strain Gauge

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO							
1		To study the characteristics of IC Temperature Sensor (LM335).	2	1							
2											
3To study the characteristics of K Type Thermocouple.23											
4		To study the characteristics of NTC Thermistor.	2	4							
5		To study the Temperature controlled Alarm System using 1NTC.	2	4							
6		To study the Temperature controlled Alarm System using 2NTC.	2	4							
7		To study the characteristics of NTC Bridge circuit.	2	4							
8		To understand the working principle of Strain gauge.	2	5							
Referen	ce Books:										
1. Don	ald P. Eckman, "Au	tomatic Process Control", Wiley India Edition, Wiley India Pvt. Ltd, 2009									
2. F. G	. Shinskey, "Proces	s control Systems", McGraw Hill, 4th Edition, 1996.									
3.P. W	. Murrill, "Fundame	entals of Process Control Theory", International Society of Automation, 3rd Edi	tion, 2012								
4. G. D	D. Considine, "Proce	ess Instrumentation and control Handbook", McGraw Hill, 5th Edition, 1993									
e-Lear	rning Source:										
	8										

	Course Articulation Matrix: (Mapping of Cos with Pos and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	1	2	3							2	2	2		3	3	3
CO2	3	3	1	2	3							2	2			3	3	3
CO3	3	1	1		3							2	2			3	3	1
CO4	3	2	2		3							2	2			3	3	1
CO5	3											3	3			3		2

Effective from Session: 2017	7-18						
Course Code	EE311	Title of the Course	POWER SYSTEM II	L	Т	Р	С
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Und Per Ana pow Und fran Sol Per trav 	derstand the functioning form Fault analysis for a alyze multi-node power ver system factor the ad derstand the formulatior nework. ve power flow problems form Steady-state analy relling waves under diffe	power system including generators, transmission lines, and of a synchronous machine and represent it with simple mode a balanced three-phase power system . systems using an admittance matrix or impedance matrix re- mittance matrix to obtain a solution of the network voltages. To f the power flow problem, and have the ability to cast any by the application of Newton method & Gauss seidel. sis for a balanced three-phase power system,Reflection and erent line loadings and line against travelling waves	lels. presen given	tation o	in this	

	Course Outcomes
CO1	Representation of Elements in Electric Power System in Per-Unit system and Analysis of Symmetrical faults.
CO2	Analysis of Unsymmetrical faults.
CO3	Understanding the formulation of the power flow problem and to cast any given system in this framework
CO4	Understanding the concept of steady state and transient stability.
CO5	Need of Protection of equipments and line against travelling waves.
005	Need of Protection of equipments and line against travelling waves.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Representation of Power System Components	Synchronous machines, Transformers, Transmission lines, Single line diagram, Impedance and reactance diagram, Per unit System, Transient in R-L series circuit. Symmetrical fault analysis: Calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions	8	CO1
2	Symmetrical components	Symmetrical Components of unbalanced phasors, power in terms of symmetrical components, sequence impedances and sequence networks. Unsymmetrical faults: Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Zbus using singular transformation and algorithm	8	CO2
3	Load Flows	Introduction, bus classifications, nodal admittance matrix, development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-R method, line flow equations and fast decoupled method.	8	CO3
4	Power System Stability	Stability, Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion and step-by-step method, Factors affecting steady state & transient stability and methods of improvement.	8	CO4
5	Traveling Waves	Wave equation for uniform transmission lines, velocity of propagation, surge impedance, reflection and transmission of traveling waves under different line loadings, Protection of equipments and line against traveling waves.	8	CO5
Referen	nce Books:			
1.W.D.	Stevenson, Jr. " Elemen	ts of Power System Analysis", Mc Graw Hill 4th edition		
2. C.L.	Wadhwa, "Electrical Po	wer System", New Age International, 2009		
3. Chak	raborthy, Soni,Gupta &	Bhatnagar, "Power System Engineering", Dhanpat Rai & Co. ,2008		
4. T.K 1	Nagsarkar & M.S. Sukhi	ja, "Power System Analysis" Oxford University Press, 2007.		
5. Hadi	Sadat; "Power System A	Analysis", Tata McGraw Hill. 2nd Edition, 2002.		
6.D.Das	s, " Electrical Power Sys	tems" New Age International, 2006.		
7. P.S.R	R. Murthy " Power Syste	m Analysis" B.S. Publications,2007.		
e-Lea	rning Source:			

						С	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSO	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	3	2								2	2	3	3	2			
CO2	3	3	2	2	2								3	3	2			
CO3	3	3	1	2	2							2	3	3	2			
CO4	3	2	3	2	3					2	2		3	2	1			
CO5	3	3	3			2	1				2	2	3	2	1			

Effective from Session: 2022	2-23						
Course Code	EE313	Title of the Course	Microprocessor and Peripheral Devices	L	Т	Р	С
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To To 	attain knowledge of dif study about different ty	and memories ecture of 8085 and 8086 ferent instruction set of 8085 and 8086 pes of Programmable Peripheral Interface analog to digital and digital to analog converter chips				

	Course Outcomes
CO1	Understand the basics of microprocessor
CO2	Understand the architecture of 8085 and 8086
CO3	Knowledge of instruction set of 8085 and 8086
CO4	Knowledge of programmable peripheral interface
CO5	Knowledge of analog to digital and digital to analog converter

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Microcomputer System	Introduction of Microcomputer System: General definition of minicomputer, microprocessors, CPU, I/O devices, clock, memory, bus architecture, tri-state logic, address bus, data bus and control bus. Semiconductor Memories: Development of semiconductor memory, internal structure and decoding, memory read and writes timing diagrams, ROM, RAM.	8	CO1
2	Architecture of Microprocessors	Architecture of Microprocessors: Introduction of Intel 8085 and 8086 microprocessor, Pindescription and their internal architecture. Introduction of Intel 80386. Operation and Control of Microprocessor: Timing and control unit, memory read/write machinecycles, I/O read/write machine cycles, interrupt acknowledge machine cycle.	8	CO2
3	Instruction Set	Instruction Set: Addressing modes- Data transfer, arithmetic, logical, branch, stack andmachine control groups of instruction set, unspecified flags and instructions. Assembly Language Programming, Assembler directives, Subroutines	8	CO3
4	Interfacing	Interfacing: Interfacing of memory chips, Interfacing of I/O devices, I/O addressing- I/Omapped and memory mapped I/O schemes, 8257(DMA Controller), 8259(Interrupt priority Control), 8253/8254 Programmable timer/counter with modes of operation. Interrupts: Interrupt structure of 8085 microprocessor.	8	CO4
5	Programmable Peripheral Interface	Programmable Peripheral Interface: Intel 8255, pin configuration, internal structure of a portbit, modes of operation, bit SET/RESET feature, ADC and DAC chips and their interfacing. Programmable Interval Timer: Intel 8253, pin configuration, internal block diagram of counter and modes of operation, counter read methods.	8	CO5
	ce Books:			
		croprocessor and Microcomputer", Dhanpat Rai Publication, 4th Edition.2008		
		cessors and Applications", John Wiley & Sons ,2008		1.0000
	-	nd Interfacing-Programming and Hardware", 2nd Ed., Tata McGraw-Hill Publishing Company L	imited, repri	inted 2008
4. Gaonl	kar R.S., "Microprocesso	or Architecture, Programming and Applications", 6th Ed., Penram International, 2013.		
e-Lear	rning Source:			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO CO1	3			1	1	1	1					3	3	3	2			
CO2	3	2	2	2	2	1						3	3	3	2			
CO3	3	2	2	2	2	1						3	3	2	2			
CO4	3	2	2	2	2	1	1					3	2	2	2			
CO5	3	1	1	1	1	1	1					3	3	2	2			

Effective from Session: 2017	7-18						
Course Code	EE325	Title of the Course	CONVENTIONAL & CAD OF ELECTRICAL MACHINES	L	Т	Р	С
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To tran To max To (A0) To 	understand the fundaments asformers and rotating n provide advanced know chines. provide the basis and th C machines and DC machines	ledge and understanding about the construction and design e methodologies to correct a design of the electrical machin	of the es (tra	electric nsform	cal ers, rota	

	Course Outcomes
CO1	Student understands the basic concept of design, limitations faced in the designing process, and classification & importance of Insulating
	materials.
CO2	Student is able to understand the design concepts of transformers and know about how to design the core, yoke & windings.
CO3	Upon completing the course, student is able to understand the factors affecting the size of rotating machines and design of core & armature in
	DC machines along with selection of frame size.
CO4	Student is able to understand the rotor design of Induction motor and field system design of Synchronous machines & DC machines along
	with problem solving techniques related to design.
CO5	Student understands the importance of Computer aided design and different approaches based on their applications along with the concept of
	optimization.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basic Considerations	Basic concept of design, Limitation in design, Standardization, Modern trends in design and manufacturing techniques, Classification of insulating materials. Calculation of total magnetomotive force (m.m.f) and magnetizing current.	8	CO1
2	Transformer Design	Output equation; Design of core, yoke and windings; Overall dimensions; Computation of no load current to voltage regulation; Efficiency and cooling system designs	8	CO2
3	Design of rotating machines I	Output equations of rotating machines, Specific electric and magnetic loadings, Factors affecting size of rotating machines, Separation of main dimensions, Selection of frame size, core and armature design of dc machines.	8	CO3
4	Design of rotating machines II	Core and armature design of 3-phase ac machines, Rotor design of three phase induction motors, Design of field system of Direct Current (DC) machine and synchronous machines, Estimation of performance from design data.	8	CO4
5	Computer Aided Design	Philosophy of computer aided design, advantages and limitations; Computer aided design approaches analysis; Synthesis and hybrid methods; Concept of optimization and its general procedure; Flow charts and 'c' based computer programs for the design of transformer, DC machine, three phase induction and synchronous machines.	8	CO5
Referen	ce Books:			
1. A. K.	Sawhney, "A Course in	Electrical Machine Design", Dhanpat Rai & Sons, 6th Edition, 2006.		
2. K.G.	Upadhyay, "Convention	al and Computer Aided Design of Electrical Machines", Galgotia Publications, 1st edition, 2004		
3. M.G.	Say, "The Performance	and Design of AC Machines", Pitman & Sons, 2nd Edition 1952		
4. A.E. 0	Clayton and N.N. Hanco	ock, "The Performance and Design of D.C. Machines", Pitman &Sons.		
5. S.K. S	Sen, "Principle of Electr	ical Machine Design with Computer Programming", Oxford and IBM Publications		
e-Lear	rning Source:			
C-Leal	ining bource.			

						C	ourse A	Articul	ation N	Aatrix: ((Mappi	ng of COs	s with PO	s and PSO	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	2									3	3	3	2			
CO2	3	3	2	2	2						2		3	3	2			
CO3	3	3	1	2	2						2	2						
CO4	3	2	3	2	3					2	2							
CO5	2	2	2			2	2											

Effective from Session: 2017	7-18						
Course Code	EE333	Title of the Course	ADVANCED CONTROL SYSTEMS	L	Т	Р	С
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	Control System EE301/EE3 01	Co-requisite	None				
Course Objectives	 To To To 	get the knowledge of sta design the state observe gain information on nor	te space analysis of continuous system. ate equations, controllability and observability ar and controller using pole-placement approach n-linear control system the system using Lyapunov's stability analysis				

	Course Outcomes
CO1	Students will be able to understand different state model of a system, and have the knowledge to find its solution.
CO2	Students will be industry ready by analysis of controllability and observability of the dissimilar system.
CO3	Students will be industry ready by designing the State observer and controller using pole- placement approach
CO4	Students will be able to understand nonlinear system models, and analyse its stability.
CO5	Students will be able to analyse system's stability using Lyapunov stability analysis.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	State Space Analysis of Continuous System	Introduction, Concept of state, Sate variable description, State space representation, state variable representation of continuous system, Conversion of state variable models to transfer function and vice-versa.	8	CO1			
2	State Equations, Controllability and Observability	Characteristic equation, state transition matrix, Solution of state equations, Concept of controllability and Observability, Controllable, observable and diagonal canonical form.	8	CO2			
3	Pole-Placement Design and State observer	8	CO3				
4	Non-linear Control System	Non-linear ControlTypes and characteristics of non-linearity, phenomena related to non-linear systems. Phase plane analysis, types of phase portraits, singular points, construction of phase					
5	Lyapunov's Stability analysis	Concept of Lyapunov's stability, Stability of equilibrium state, asymptotic stability, Lyapunov's stability theorems for continuous systems, methods of generating Lyapunov's function for continuous system, Stability analysis of non-linear system.	8	CO5			
	ce Books:						
1.M.Goj	pal, "Digital Control and	l State variable Methods", Tata Mc Graw Hill, 4th Edition, 2015					
2.Ajit K	.Madal, "Introduction to	Control Engineering: Modelling, Analysis and Design" New Age International, 5th Edition, 20	013.				
3.K. Og	ata, "Modern Control E	ngg.", PHI, 4th Edition, 2002.					
4.S. K. I	Bhattacharya, "Control s	system Engg.", Pearson Education, 2nd Edition, 2008.					
5.B.N. S	Sarkar "Advanced contro	ol system" PHI Learning Pvt. Ltd., 2013.					
	ming Courses						

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSC)s)			
PO-																		
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO	-	-																
CO1	3	2		1										2	2			
CO2	3	2													3			
CO3	3	2		2								1	2	2				
CO4	1	2		3								1			2			
CO5	2	2	3		2							1		2				

Effective from Session:	2023-24												
Course Code	EE335	Title of the Course	le of the Course INDUSTRIAL AUTOMATION L										
Year	3rd	Semester	6 th	3	1	0	4						
Pre-Requisite	None	Co-requisite	-requisite None										
Course Objectives	• To raise	the level of safety for pe	uman involvement and possibility of human error. ersonnel e caused by manual handling				<u>.</u>						

Course Outcomes

	Course Outcomes
CO1	Understand and analyze the concept, design, technique, advancement and application of Automatic Control, Proportional- Integral-derivative (PID) Control and their Tuning, Feed-forward and Ratio Control, Time Delay Systems and Inverse Response Systems
CO2	Understand and analyze the concept, design, technique, advancement and application of Different types of controllers, Single loop and Multi loop controllers, Sequential and Programmable controllers, Architecture, Functional blocks, Programming of PLC: Relay logic and Ladder logic, Communication Networks for PLC, PLC based control of processes- Computer control of liquid level system, heat exchanger; Smart sensors.
CO3	Understand and analyze the concept, design, technique, advancement and application of Functional requirements and Components. General features, Functions and Applications, Benefits. Configurations of SCADA, Remote Terminal Unit Connections. Human Machine interface.
CO4	Understand and analyze the concept, design, technique, advancement and application of Different architectures, Local control unit, Operator Interface, Engineering interface, Study of any one DCS available in market, Factors to be considered in selecting DCS
CO5	Understand and analyze the concept, design, technique, advancement and application of robot, Asimov's Laws of robotics, construction and configuration, Pick and Place robot, Industry 4.0

	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
	1	Industrial Automation Systems	Introduction, Architecture, Introduction to Automatic Control, Proportional- Integral- derivative (PID) Control and their Tuning, Feed-forward and Ratio Control, Time Delay Systems and Inverse Response Systems.	8	CO1				
-	2	Controllers	Different types of controllers, Single loop and Multi loop controllers, Sequential and Programmable controllers, Architecture, Functional blocks, Programming of PLC: Relay logic and Ladder logic, Communication Networks for PLC, PLC based control of processes- Computer control of liquid level system, heat exchanger; Smart sensors		CO2				
	3	Supervisory Control and Data Acquisition (SCADA)	8	CO3					
	4	Distributed Control System (DCS):	ributed Control Evolution, Different architectures, Local control unit, Operator Interface,						
	5	Industrial Automation using Robots	Robotics: Introduction, Definition of a robot, Asimov's Laws of robotics, Robot terminology, Basic construction and configuration, Pick and Place robot, Introduction to Industry 4.0	8	CO5				
	Referen	ce Books:							
Ī	1. Sebor	g, D.E., Edgar, T.F. and	Mellichamp, TF Edgar, FJ Doyle III, "Process dynamics and control", Wiley, 3 rd edition 2010						
	2. Smith	, C.A. and Corripio, A.E	8. "Principles and practice of automatic process control", Wiley, 3rd edition, 1997						
	3. Johnso	on, C.D. "Process contro	l instrumentation technology," Prentice-Hall, 8th edition, 2008						
4.	4. Kalsi,	H.S., "Electronic Instru	mentation", McGraw Hill, 3 rd edition, 2010						
Ī	5. Anjan	na, R., "Industrial Auto	mation", Technical Publications, 1st Edition, 2022						
	e-Lear	ning Source:							

						С	ourse	Articul	lation I	Matrix:	(Mappi	ng of CO	s with PO	s and PSC	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7											
CO1	3	3	1	2	3							2	3	2	3														
CO2	3	3	1	2	3							2	3	2	3														
CO3	3	1	1	2	3							2	3	2	3														
CO4	3	1	1	2	3							2	3	2	3														
CO5	3	1	1	2	3							2	3	2	3														

Г

Effective from Session: 2017	7-18						
Course Code	EE343	Title of the Course	L	Т	Р	С	
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• To	make aware the student provide the knowledge	ge of Nonconventional energy Resources sources. s about alternate resources of energy. of decentralized energy supply to agriculture, industry, con	mercia	l and 1	House-h	ıold

Course Outcomes
Given an energy systems and quantifying energy students shall be able to represent this in comparison to various conventional Fossil fuels, identify type of system, apply vector algebra, and formulate the Remedies & alternatives for fossil fuels.
Given a Modelling of Solar Energy with sources, student shall be able to analyse theory of solar cells, solar radiation, solar characteristics and limitations.
For a Wind Energy Systems, student shall be able to generate its analytical response and resource assessment, analyse and evaluate the characteristics by Power Conversion Technologies.
For a given Hydro power, students shall be able to identify its characteristics and for Generation and Distribution, select suitable design of application of Mini and Micro-hydel Power with various combination for System
Given a Nuclear Energy system, student shall be able to define its fuel enrichment, different types of nuclear reactors, nuclear waste disposal, solve/ analyse, and modify Integrated Energy systems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Introduction	Introduction to energy systems and resources; Energy: sustainability & the environment, Quantifying energy & energy arithmetic, Electricity - a primer, Fossil fuels - past, present & future, Remedies & alternatives for fossil fuels, Energy efficiency and conservation, Introduction to renewable energy, availability, classification, relative merits and demerits.	8	CO1				
2	Source of Energy	Sun as Source of Energy, Availability of Solar Energy, Nature of Solar Energy, Solar Energy & Environment. Various Methods of using solar energy –Photo thermal, Photovoltaic, Present & Future Scope of Solar energy. Theory of solar cells, solar radiation, solar characteristics, limitations, solar thermal power plants, Solar Photovoltaic systems.	8	CO2				
3	3 Basics & Power Analysis Basics of wind turbine design. Basics of wind turbine design.							
4	Hydro power	Hydro power: Potential, Hydropower Generation and Distribution, Mini and Micro hydel Power (MHP) Generation: Classification of hydel plants, Concept of micro hydel, merits, MHP plants: Components, design and layout, Turbines, efficiency, Status in India.	8	CO4				
5	Nuclear Energy	Potential of Nuclear Energy, Nuclear Energy Technologies – Fuel enrichment, Different Types of Nuclear Reactors, Nuclear Waste Disposal and Nuclear Fusion. Hybrid energy systems - Integrated Energy systems, Diesel-PV, wind-diesel power, wind conventional grid, wind-Photovoltaic system.	8	CO5				
Referen	ce Books:							
1.B.H K	han, "Non-Conventiona	l Energy Resources" Tata Mc Graw-Hill Pvt. Ltd., 2nd Edition,2009.						
2.G.D.R	ai, "Non-Conventional	Energy Resources" Khanna Publishers, 4th Edition, 2000.						
3.Freris,	L.L. "Wind and Solar I	Power Systems" Prentice Hall, London, 1999						
e-Lear	ming Source:							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-	DOL		200	201	205	DO C	207	200	200	2010	DOLL	2010	Daoi	D 200	DEC (7005	DOO 6	DOOR
PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	3	2										2	2	2			
CO2	3	3	2	2	2								2	2	2			
CO3	3	3	1									2	3	2	2			
CO4	3	3	3	2	3					2	2		2	3	2			
CO5	3	3	3			2	1						2	2	2			

Effective from Session: 2017	7-18						
Course Code	EE345	Title of the Course	L	Т	Р	С	
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Ana Kr Ana 	owledge and concept of alysis & Design of Isola nowledge and concept of alysis & Design of Self signing of Soft switching	f AC Regulators. Driven Inverters.				

	Course Outcomes
CO1	Know about the concept of non-isolated DC-DC converters.
CO2	Analyze & Design Isolated Converters.
CO3	Know about concept of AC Regulators.
CO4	Analyze & Design Self Driven Inverters.
CO5	Design Soft switching Converters.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO								
1	Unit I	Limitations of Linear power supplies; Switched Mode Power Conversion; Analysis & Design of Non-isolated DC-DC Converters: Buck, Boost, Buck-boost operations in CCM and DCM.	8	CO1								
2	2 Unit II Analysis & Design of Isolated Converters: Forward, Push-Pull, Half Bridge, Full Bridge, Flyback, Cuk, SEPIC, High-Boost Topologies.											
3	Unit III	Review of AC Regulators and Cyclo-converters; Voltage control and Harmonic minimization in inverters, square wave operation; Multilevel Inverter.	8	CO3								
4	Unit IV	Analysis & Design of Self Driven Inverters, Driven Inverter, Quasi-Square Wave Inverter; PWM, PWM with Harmonic Elimination; Matrix Converter.	8	CO4								
5	Unit V	Soft switching Converters - Switching loss, hard switching, soft switching; Resonant Converter, basic principles of ZVS, ZCS, and ZVZCS.	8	CO5								
	ice Books:			N								
I. Ned N	Mohan, Tore M, Undelna	ad, William P, Robbins (3rd Edition), "Power Electronics:Converters, Applications and Design,"	Wiley 2002	2.								
2. L. Un	nanand, Power Electroni	ics - Essentials and Applications; Wiley India Pvt. Ltd										
3. P.C S	en.,' Modern Power Ele	ctronics ', Wheeler publishing Co, First Edition, New Delhi,1998.										
4. M H I	Rashid, Power Electroni	cs - Circuits, Devices and Applications; PHI, New Delhi.										
5. Philip	5. Philip T Krein: Elements of Power Electronics; published by Oxford University Press.											
e-Lear	rning Source:											

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSC	Ds)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	1	1	1	1	3	1					3		2	2			
CO2	3	2	3	1	3	3	1					3	2	3	2			
CO3	3	1	1	1	1	3	1					3		3	2			
CO4	3	2	3	1	3	3	1					3	2	3				
CO5	3	2	3	3	3	3	2					2	2	2	2			

Effective from Session:	: 2017-18						
Course Code	EE347	Title of the Course	Modeling and Dynamic Analysis of Electrical Machines	L	Т	Ρ	с
Year	3 rd	Semester	6 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• • •	To understand the a To provide advance To understand the	lge of the concept of magnets advance concepts of DC machine knowledge of reference frame theory advance concepts of Induction machine nce concepts of Synchronous machine				

	Course Outcomes
CO1	Student understands the basic concept of magnets and electromechanical conversion
CO2	Student is able to understand the characteristics of DC machines
CO3	Student is able to understand the concept of reference frame theory
CO4	Student is able to understand the reference frame concept in induction machines
CO5	Student understands the importance of performance of synchronous machine under different conditions

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO									
		Flux, mmf, reluctance - self, leakage, magnetizing and mutual	8	CO1									
1	Basics of	inductances; Analysis of magnetic circuits with airgap; Analysis of											
	Magnetic Circuits	singly excited electromechanical system with linear magnetics; Basic											
		Fundamentals of electromechanical energy conversion.	0										
	Analysis of DC	Voltage & Torque Equations; Dynamic Characteristics of Permanent	8	CO2									
2	Machines	Magnet & Shunt DC Motors; Time-Domain Block Diagrams & State Equations; Solution of Dynamic Characteristics by Laplace											
		Transformation.											
	Reference Frame Introduction; Equations of Transformation; Commonly Used 8 CO3												
2	3 Theory Reference Frame – Rotor, Stator, Synchronous & Arbitrary;												
5	Transformation between reference frames												
	Analysis of Voltage & Torque Equations; Commonly used reference frames; 8 CO4												
4	Induction	Analysis of Steady-State operation; Free Acceleration	0	004									
•	Machines	Characteristics; Dynamics Performance under load change.											
	Analysis of the	Voltage & Torque Equations ; Analysis of steady state operation and	8	CO5									
5	Synchronous	Dynamic performance; Response under short circuit conditions, sub	-										
	Machines transient, transient and steady state conditions.												
Reference													
1. Paul C. K	Krause, "Analysis of Ele	ectrical Machinery & Drive System", Wiley India, 2nd Edition 2010											
2. R.Krishn	an, "Electric Motor Dr	ives, Modeling, Analysis, & Control", Prentice Hall, 2nd Edition 2002											
		eory of Electrical Machines", Khanna Publishers											
4. B.K.Bose	e, "Modern Power Ele	ctronics & AC Drives", Prentice Hall, 2015											
	1.	uction to Generalized Machine Theory", 1968											
6. Bernard	Adkins, "The General	theory of electrical Machines", Chapman & hall ltd											
7. I.P. Kopy	ylov, "Mathematical N	lodels of Electric Machines", Mir Publisher											
e-Learnin	ng Source:												

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	3	2									3	3	3	2			
CO2	З	3	2	2	2						2		3	3	2			
CO3	3	3	1	2	2						2	2						
CO4	3	2	3	2	3					2	2							
CO5	2	2	2			2	2											

Effective from Session: 2017	7-18												
Course Code	EE351	Title of the Course	SENSOR AND INSTRUMENTATION	L	Т	Р	С						
Year	3 rd	Semester	6 th	2	1	0	3						
Pre-Requisite	None	Co-requisite	None										
Course Objectives	• DS	 different types of sensors and transducers used in Industries DSP,ADC,DAC,S/H circuit. Analyse the instuments on the basis of accuracy, precision and resolution 											

	Course Outcomes
CO1	Knowledge of different types of sensors and transducers used in Industries
CO2	Knowledge of DSP,ADC,DAC,S/H circuit. Measurement of flux and hysteresis of magnetic specimen
CO3	Analyse the instuments on the basis of accuracy, precision and resolution
CO4	Knowledge of different telemetry systems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Sensors & Transducer	Definition, Classification & Characterization, Displacement Sensors: Potentiometric, LVDT & Optical Encoder; Accelerometers: Mass & Piezoelectric; Strain Gauges: Wire & Semiconductor; Pressure Sensor: LVDT based Diaphragm & Piezoelectric, Temperature Sensor: Thermocouple, RTD, & Liquid in Glass; Flow Sensor: Ultrasonic, Electromagnetic, Laser & Thermal; Level Sensor: Ultrasonic & Capacitive; Proximity Sensor, Concept of Smart Sensors.	8	CO1			
2	Digital Processing of Analog Signal	Analog Multiplexer Circuit, S/H Circuit, ADC, DAC, Convolution, Digital Filtering. Magnetic Measurement: Ballistic Galvanometer, flux meter, determination of hysteresis loop, Measurement of iron losses.	8	CO2			
3	3 Instrumentation System Flow, Pressure, and Temperature Measurement; Measurement Errors: Gross errors and systematic errors, Absolute and relative errors, Accuracy, Precision, Resolution and Significant figures.						
4	Data Transmission and Telemetry	Telemetry System and its Classification, Voltage, Current and Position Telemetry Systems, Frequency Modulation Telemetry.	8	CO4			
Referen	ce Books:						
1. Arun	K. Ghosh "Introduction	to measurements and Instrumentation, PHI, 4th Edition 2012.					
2. David	l A. Bell "Electronic Ins	trumentation & measurement" 3rd Edition 2013, Oxford University Press.					
3. DVS	Murthy "Transducers ar	nd Instrumentation, PHI 2nd Edition 2013					
4. D Pat	ranabis "Sensors and Tr	ansducers" PHI 2nd Edition 2013.					
5. Ranja	n CS (et.al) "Instrument	tation and Device Systems" PHI.					
6. A.K.S	Sawhney and Puneet Sav	whney," A Course in Electrical and Electronics Measurement and Instrumentation," Dhanpat Rai	& Co.Pvt L	td.			
e-Lean	rning Source:						

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01					3	1				3	2		2	3	1			
CO2	1		2		3								3	2	1			
CO3		3	2		1								3	2	1			
CO4						1			2	3			3	3	1			

Effective from Session: 2017-18									
Course Code	EE353	Title of the Course	POWER STATION PRACTICE	L	Т	P	C		
Year	3rd	Semester	6 th	2	1	0	3		
Pre-Requisite	None	Co-requisite	None						
Course Objectives	 To To To To 	get the detailed knowled get the detailed knowled get the knowledge of Nu have the knowledge of I	ectric energy demand and growth in India lge of Thermal Power Plant. lge of Hydro Power Plant. Iclear, Gas and Diesel Power Plant. Power Plant Economics and Tariffs Economic Operation of Power Systems						

Course Outcomes	
-----------------	--

	Course Outcomes
CO1	Understand the Electric energy demand and growth, Thermal Power Plant and Hydro Electric Power Plant
CO2	Understand the Nuclear Power Plant, Gas Turbine Plant and Diesel Power Plants
CO3	Having knowledge of Power Plant Economics and Tariffs
CO4	Having knowledge of Economic Operation of Power Systems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Thermal Power Plant and Hydro Power Plant	Introduction: Electric energy demand and growth in India, electric energy sources. Thermal Power Plant: Site selection, general layout and operation of plant, detailed description and use of different parts. Hydro Electric Power Plant: Classification, location and site selection, detailed description of various components, general layout and operation of Plants; brief description of impulse, reaction, Kaplan and Francis turbines; advantages & disadvantages; hydro-potential in India.		CO1
2	Nuclear, Gas and Diesel Power Plant	Nuclear Power Plant: Location, site selection, general layout and operation of plant. Brief description of different types of reactors, Moderator material, fissile materials, control of nuclear reactors, disposal of nuclear waste material, shielding. Gas Turbine Plant: Operational principle of gas turbine plant & its efficiency, fuels, open and closed-cycle plants, regeneration, inter-cooling and reheating, role and applications. Diesel Power Plants: Diesel power plant layout, components & their functions, its performance, role and applications.	8	CO2
3	Power Plant Economics and Tariffs	Load curve, load duration curve, different factors related to plants and consumers, Cost of electrical energy, depreciation, generation cost, effect of Load factor on unit cost. Fixed and operating cost of different plants, Objectives and forms of Tariff, Causes and effects of low power factor, advantages of power factor improvement, different methods for power factor improvements.	8	CO3
4	Economic Operation of Power Systems	Characteristics of steam and hydro power plants, Constraints in operation, Economic load scheduling of thermal power plants, Neglecting and considering transmission Losses, Penalty factor, loss coefficients, Incremental transmission loss, Hydrothermal Scheduling.	8	CO4
	ce Books:			
1. B.R. C	Gupta, "Generation of E	lectrical Energy", S. Chand Publication, 7th Edition ,2017		
2. Soni,	Gupta & Bhatnagar, "A	text book on Power System Engineering", Dhanpat Rai & Co.		
3. W. D.	Stevenson, "Elements of	of Power System Analysis", McGraw Hill,4th Edition, 1982.		
4. S. L. U	Uppal, "Electrical Power	r", Khanna Publishers, 15th Edition,2009		
e-Lear	ning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	2	1	1								1	2	1	2			
CO2	3	3		1								1	2	3	2			
CO3	3	3	1	2								1	2	3	2			
CO4	3	2	3				3		3	2	2	1	2	3	2			
CO5	3	1	3	2	2	2			3	2	2	2	2	3	2			

Effective from Session:							
Course Code	EE 334	Title of the Course	Advanced Control system Lab	L	Т	Р	С
Year	III	Semester	VI	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	• To • To	analyze the first orde	ction and mathematical modeling of mechanical system r and second order system. of the system using different frequency domain analystor		ols		

	Course Outcomes
CO	Represent a system (in the form of transfer function) in MATLAB considering it's zeros, poles and gain.
CO2	Analyse the plots of time and frequency responses of SISO and MIMO systems.
CO	Analyse the response of RLC circuit. Assess gain and phase margin to examine the effect of stability margins on closed loop
	response characteristics of a control system.
CO ₄	Frequency domain analysis for the given system

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO		
1	Time domain analysis	Study of first order and second order system responses-measurement of system parameters in MATLAB	2	1		
2	Stability Analysis	marginally stable.				
3	3 Time domain analysis Plotting unit step response of given transfer function and find peak overshoot, peak time.					
4	State space	Finding state space representation of given closed loop system.	2	2		
5	Stability Analysis	Plotting Bode plot of given transfer function and finding gain and phase margin.	2	4		
6	Stability Analysis	Plotting Nyquist plot for given transfer function and to discuss closed loop stability, gain and phase margin	2	4		
7	Stability Analysis	Plotting root locus of given transfer function and finding S, Wd, Wn at given root.	2	4		
8	Stability Analysis	Plotting locus of given transfer function, locating closed loop poles for different value of k.	2	3		
Referen	ce Books:					
M.Gopa	al, "Digital Control ar	nd State variable Methods", Tata Mc Graw Hill, 4th Edition, 2015				
Ajit K.N	Madal, "Introduction	to Control Engineering: Modelling, Analysis and Design" New Age International, 5th 1	Edition, 201	13.		
K. Ogat	ta, "Modern Control H	Engg.", PHI, 4th Edition, 2002.				
S. K. B	hattacharya, "Control	system Engg.", Pearson Education, 2nd Edition, 2008.				
e-Lear	ming Source:					
https://	nptel.ac.in/courses/108	103007				

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	3	3	2	3							2	2	2		3	3	3
CO2	3	3	3	2	3							2	2			3	3	3
CO3	3	1	1		3							2	2			3	3	1
CO4	3	3	2	3	3							2	2			3	3	1

Effective from Session:							
Course Code	EE 336	Title of the Course	Industrial Automation Lab	L	Т	Р	С
Year	III	Semester	VI	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	pne • Stu • Stu	umatics, industrial sense dent will be able to unde dent will be able to unde	th basic skills useful in identifying the concepts of autor ors, PLC and distributed control strategies. erstand & develop the ladder program for DOL starter and it erstand the hardware & software used in PLC and Implement erstand the Performance of Timers & Counters.	s appli	cation	as a tim	ner.

	Course Outcomes
CO1	Student will be able to understand the hardware & software used in PLC and Implementation of logic gates.
CO2	Student will be able to understand & develop the ladder program for DOL starter and
	its application as a timer.
CO3	Student will be able to understand the hardware & software used in PLC and
	Implementation of logic gates.
CO4	Student will be able to understand the Performance of Timers & Counters.

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1	PIC Application	Study and use of Examine if closed (XIC) and Examine if open (XIO) bit instruction.	2	1
2	PIC Application	Study and Use of NOR Gate.	2	3
3	Latching	Study and use of Latch (L) and Unlatch (U) bit instruction.	2	2
4	Timer on and Timer Off	Study and use of ON Delay Timer (TON) and OFF Delay Timer (TOF) bit instruction.	2	2
5	Math instruction	Study and use of Compute Math (Addition) instruction.	2	3
6	Bit instruction	Study and use of Bit shift left (BSL) bit instruction.	2	4
7	Counter	Study and use of UP Counter (CTU) and of Down Counter (CTD) bit instruction.	2	4
	PIC Application	Study and use of Jump & Label Instruction.		1
8	Relay instruction	Study and use of MCR (Master Control Relay) instruction.	2	3
Referen	ce Books:		•	
Antony	Espossito, "Fluid power	with Applications ", Pearson, Sixth Edition., 2003		
	on, "Mechatronics: Elec - 5th Edition.	tronic Control Systems in Mechanical and Electrical Engineering" - PrenticeHall		
Singh, S	Shio Kumar. Industrial I	nstrumentation & Control, Tata McGraw-Hill Education, 2010.		
e-Leai	rning Source:			
	0			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	2	1	1	1	2							2	2	2		3	3	3
CO2	2	3	2	1	1	1						2	2			3	3	3
CO3	3	2	3	2	2	1	1					2	2			3	3	1
CO4	2	3	2	1	1	2						2	2			3	3	1

Effective from Session:							
Course Code	EE342	Title of the Course	Soft Computing Lab	L	Т	Р	С
Year	3 rd	Semester	6 th	0	0	2	1
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Der Use Und and To 	nonstrate an understand so of transform analysis derstanding how to creat control system. generate high-quality s	lopments of artificial intelligence leading to artificial neural ing of the fundamental properties of linear systems and convolution, to analyze and predict the behavior of linear te fuzzy data sets; Understanding how fuzzy data sets can le solutions to optimization and search problems by relying crossover and selection.	ar time ad to b	e invari better co	ant syste	r

	Course Outcomes								
CO1	To understand about artificial neuron and their architecture.								
CO2	To understand the learning methods of artificial neurons and their memories.								
CO3	To understand the difference between crisp sets and fuzzy sets.								
	To understand about fuzzy logics, mathematical tools.								
CO5	To learn the optimization technique using genetic algorithm.								

Unit No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		Realising Activation Function.	2	1
2		Realising XOR Function using McCulloch-Pitts Neuron.	2	1
3		Create a Perception Network (nntool).	2	2
4		To realize OR gate using nntool in MATLAB.	2	2
5		Develop a single input single output fuzzy logic controller using Fuzzy GUI in MATLAB.	2	3
6		Develop a double input single output fuzzy logic controller using Fuzzy GUI in MATLAB.	2	4
7		Develop a fuzzy logic cruise controller using Fuzzy GUI in MATLAB.	2	4
8		To minimize an objective function using the Genetic Algorithm.	2	5
Referen	ce Books:		•	
	jashekharan & G.A. Vig st edition 2012.	jay Lakshmi Pai, "Neural Network, Fuzzy logic and Genetic Algorithms: synthesis and applicat	ions", Prenti	ce Hall
2. Timor	nthy J.Ros " Fuzzy Logi	ic with engineering applications" Will India, 2 nd edition 2007.		
3. S.N S	ivanandam & S.N Deep	a "Introduction to genetic algorithm" Springer 1 st edition, 2008.		
e-Leaı	rning Source:			
	NPTEL			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO	-			_												
CO1	3	3	2	2		1			1	1		1	1	1	1	
CO2	3	3	2	2				1		1		1	1	1	1	
CO3	3	3	2	2		1			1	1		1	1	1	1	
CO4	3	3	3	2		1			1	1		1	1	1	1	
CO5	3	3	2	2		1		1		1		1	1	1	1	

Effective from Session: 2022-2	23						
Course Code	EE346	Title of the Course	Converter Lab	L	Т	Р	С
Year	3 rd	Semester	6 th	0	0	2	1
Pre-Requisite	EE201	Co-requisite	NIL				
	Know a	about the the operation	of single phase controlled converter using R and RL load	l.			
Course Objectives	-	e single phase AC volta lge inverter.	age control using TRIAC and the operation of a modified	Mc-N	Murray	Bedfor	d
	Know a	about the operation of i	nverters.				
	Analyz SCR.	e the operation of class	D commutated technique and the operation of resistance	trigge	ering ci	rcuits o	of
	Know a	about the operation of r	esistance capacitance triggering circuits of SCR and the o	operat	ion of 1	esistan	ce,
	resistar	ce capacitance and UJ	Γ triggering circuits of SCR.				

	Course Outcomes
CO1	Know about the the operation of single phase controlled converter using R and RL load.
CO2	Analyze single phase AC voltage control using TRIAC and the operation of a modified Mc-Murray Bedford full bridge inverter.
CO3	Know about the operation of inverters.
CO4	Analyze the operation of class D commutated technique and the operation of resistance triggering circuits of SCR.
CO5	Know about the operation of resistance capacitance triggering circuits of SCR and the operation of resistance, resistance
	capacitance and UJT triggering circuits of SCR.

	Content of Experiment	Contact Hrs.	Mapped CO
1	To study the operation of single phase half controlled converter using R and RL load and to observe the output waveforms.	2	1
2	To study the operation of single phase fully controlled converter using R and RL load and to observe the output waveforms.	2	1
3	To study the 1-phase AC voltage control using TRIAC.	2	2
4	To study the operation of a modified Mc-Murray Bedford full bridge inverter.	2	2
5	To study the operation of parallel inverter.	2	3
6	To study the operation of series inverter and to obtain variable AC from DC input.	2	3
7	To observe the operation of class D commutated technique.	2	4
8	To study the operation of resistance triggering circuits of SCR	2	4
9	To study the operation of resistance capacitance triggering circuits of SCR.	2	5
10	To study the operation of resistance, resistance capacitance and UJT triggering circuits of SCR	2	5
Reference	Books:		
1. Ned Mo	han, Tore M, Undelnad, William P, Robbins (3rd Edition), "Power Electronics:Converters, Applications a	nd Design," Wi	ley 2002.
2. L. Umai	nand, Power Electronics - Essentials and Applications; Wiley India Pvt. Ltd		
3. P.C Sen	.,' Modern Power Electronics ', Wheeler publishing Co, First Edition, New Delhi,1998.		
4. M H Ra	shid, Power Electronics - Circuits, Devices and Applications; PHI, New Delhi.		
5. Philip T	Krein: Elements of Power Electronics; published by Oxford University Press		
e-Learni	ng Source:		

PO-PSO		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	1	3	1	-	-	-	-	3	1	-	-	-
CO2	3	2	3	1	3	3	1	-	-	-	-	3	1	2	-	-
CO3	3	1	1	1	1	3	1	-	-	-	-	3	1	-	3	-
CO4	3	2	3	1	3	3	1	-	-	-	-	3	1	-	3	-
CO5	3	2	3	3	3	3	2	-	-	-	-	2	1	-	2	-

Effective from Session: 2018	8-19						
Course Code	EE401	Title of the Course	Power system Protection	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
	• To get the k	e basics of relays. nowledge of relay appli					
Course Objectives	Ũ	knowledge of protection					
		e different types of circu					
	• To gain the	knowledge of protectio	n of Alternator.				

	Course Outcomes							
CO1	Learn the basics of relays							
CO2	Acquire knowledge of relay application							
CO3	Acquire knowledge of protection of Transmission line							
CO4	O4 Knowledge the different types of circuit breaker							
CO5	Gain the knowledge of protection of Alternator							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to power system	Introduction to protective system and its elements, Function of protective relaying, Protective zones, Primary and backup protection, Desirable qualities of protective relaying, Basic terminology. Relays : Electromagnetic, Attraction and induction type relays; Thermal relay; Gas actuated relay.	8	CO1
2	Relay Applications and characteristics	Amplitude and phase comparators, Over-current relays, Directional relays, Distance relays, Differential relays. Static relays: Comparison with electromagnetic relays, Classification and their description, Overcurrent relays, Directional relays, Distance relays, Differential relays	8	CO2
3	Protection of Transmission line	Time graded protection; Differential and distance protection of feeders; Choice between impedance, reactance and MHO relays; Elementary idea about carrier current protection of lines; Protection of bus; Auto reclosing, Pilot wire protection	8	CO3
4	Breaking	Circuit Breaking: Arc phenomenon, Properties of arc, Arc extinction theories, Recovery voltage and re-striking voltage, Current chopping, Resistance switching, Capacitance current interruption, Circuit breaker ratings. Circuit breakers : Need of circuit breakers; Types of circuit breakers; Operating modes; Principles of construction; Details of Air Blast, Bulk Oil, Minimum Oil, SF6, Vacuum Circuit Breakers, DC circuit breakers.	8	CO4
5	Apparatus protection	Types of faults on alternator, Stator and rotor protection, Negative sequence protection, Loss of excitation and overload protection, Types of faults on transformers, Percentage differential protection, Isolated neutral system, Grounded neutral system and selection of neutral grounding	8	CO5
	ce Books:			
1. S. S. I	Rao, "Switchgear and Pi	rotection", Khanna Publishers, 13th Edition, 2008.		
2. B. Ra	vindranath and M. Char	der, "Power system Protection and Switchgear", Wiley Eastern Ltd., 5th Edison, 2015.		
3. B. Ra	m and D. N. Vishwakar	ma, "Power System Protection and Switchgear", Tata McGraw Hill, 2nd Edition, 2011.		
4. Y. G.	Paithankar and S R Bhi	de, "Fundamentals of Power System Protection", Prentice Hall of India, 2004.		
5. T.S.M	1. Rao, "Power System I	Protection: Static Relays with Microprocessor Applications", Tata McGraw Hill, 2nd edition, 19	93.	
e-Lear	rning Source:			

						Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO CO1	3		1									1	2		2			
CO1	3	2	1	1								1	2	2	2			
CO3	3	2										1	2	2	2			
CO4	3	2		2								1	2	2	2			
CO5	3	1	2									1	2	2	2			

Effective from Session: 2018	3-19						
Course Code	EE403	Title of the Course	ELECTRIC DRIVES	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	sys tecl Ana req Uno mo Des driv Ecz	tems, energy conservation nology. alyze the operation of uirements. derstand the basic princ dulation to synthesize the scribe the operation of ir ves. Learn speed control urn the basic operation o	ectric Drive systems and their role in various applications su tion, renewable energy, transportation etc., making Elec motor drives system to satisfy four-quadrant operation t iples of power electronics in drives using switch-mode co te voltages in dc and ac motor drives. iduction machines in steady state that allows them to be cont of induction motor drives in an energy efficient manner usi f stepper motors and switched-reluctance motor drives. power quality issues in powering electric drives.	tric D o mee nverte rolled	rives a t mech rs and j in indu	anical l pulse w	ling load idth otor

	Course Outcomes
CO1	Conceptualize fundamental elements of drive systems, design important elements of a drive system, understand the multi-quadrant operation
	and analyze it for different types of operation.
CO2	Understand and evaluate dynamics of motor-load combination, Develop the thermal model of a motor, Analyze steady state and transient state
	stability, select and determine the motor power rating for various duty cycles.
CO3	Analyze and perform the dynamics during starting and braking of DC and AC motor, evaluate energy loss and implement various methods to
	reduce it, examine , develop and solve various energy relations during starting and braking.
CO4	Acquire detailed knowledge of DC Shunt and Series motor operation using generalized machine theory, Apply the concepts of AC-DC and
	DC-DC Converters to evaluate and enhance the performance of steady and transient state operation, Implement speed control and current
	control loops of a DC Motor drive. Understand how DC Drives may pollute the power supply and analyze how to mitigate such pollution.
CO5	Understand the working of various phase controlled converters used in AC Drives. Learn the working principle and design details of frequency
	controlled converters used in induction motor drives. Analyze and perform the modeling and controlling CSI based drives.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Electric Drives	Electric drives and its parts, Advantages of electric drives, Classification of electric drives Speed torque conventions and multi-quadrant operations constant torque and constant power operation, Types of load torque: Components, Nature and Classification.	8	CO1
2	Dynamics of Electric Drives	Dynamics of motor-load combination; Steady state stability of Electric Drive; Transient stability of electric drive; Selection of motor power rating; Thermal model of motor for heating and cooling; Classes of motor duty; Determination of motor power rating for continuous duty, short time duty and intermittent duty; Load equalization.	8	CO2
3	Electric Braking	Purpose and types of electric braking; Braking of dc, three phase induction and synchronous motors; Dynamics during starting and braking of dc motors; Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors; Methods of reducing energy loss during starting; Energy relations during braking, Dynamics during braking of ac motors.	8	CO3
4	Power Electronic Control of DC Drives	Single phase and three phase controlled converter fed separately excited dc motor drives (continuous conduction only); Dual converter fed separately excited dc motor drive; Rectifier control of dc series motor; Supply harmonics, power factor and ripples in motor current; Chopper control of separately excited dc motor and dc series motor.	8	CO4
5	Power Electronic Control of AC Drives	Three phase induction motor drive: Static voltage control scheme, Static frequency control scheme: VSI, CSI, and cyclo-converter based drives; Special drives: Switched reluctance motor, Brushless dc motor: Selection of motor for particular applications.	8	CO5
Referen	ce Books:			
1. G.K.	Dubey, "Fundamentals	of Electric Drives", Narosa publishing House, Reprint 2017.		
2. S.K. I	Pillai, "A First Course o	n Electric Drives", Wiley Eastern Limited, 2nd Edition, 1989.		
3. M. Cl	hilkin, "Electric Drives"	, Mir Publishers, Moscow, 1st Edition, 2002.		
4. Moha	mmed A. El-Sharkawi,	"Fundamentals of Electric Drives", Thomson Asia, Pvt. Ltd. Singapore, 1st Edition, 2000.		
5. N.K.	De and Prashant K. Sen	, "Electric Drives", Prentice Hall of India Ltd., 1st Edition, 2006.		
6. V. Su	brahmanyam			
e-Lear	rning Source:			

						C	ourse A	Articula	ation N	Aatrix: (Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	1	1	2		1						2	2	1			
CO2	3	3	2	1	2							2	2	2	2			
CO3	3	3	2	2	2	2						1		2	2			
CO4	3	3	3	1	2	1		1			1		2		2			
CO5	3	3	3	2	2		1		1		1			1	2			

Effective from Session: 2018	8-19						
Course Code	EE421	Title of the Course	ELECTRICAL INSULATION IN POWER APPARATUS AND SYSTEM	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Kno Kno Kno 	owledge and application owledge and application owledge and application	of Theory of Break Down In Gaseous, Liquid and Solid did of Generation of High Voltage and Currents of Measurement of High Voltage and Currents of Over Voltage Phenomenon & Insulation Coordination of Non -Destructive Insulation Test Techniques	electric	cs		

	Course Outcomes
CO1	Understand and analyze the concept, design, technique, advancement and application of Break Down In Gases, electronegative gases, non-
	uniform field, vacuum, Liquid Dielectrics, pure liquid and commercial liquid, Solid Dielectric, solid dielectric in practice, composite dielectrics.
CO2	Understand and analyze the concept, design, technique, advancement and application of Generation of High direct Current Voltage, alternating
	voltages, impulse voltages, impulse currents and Tripping and control of impulse generators
CO3	Understand and analyze the concept, design, technique, advancement and application of Measurement of High direct Current Voltages;
	alternating & Impulse voltages, High direct, alternating & Impulse Currents and Cathode ray oscillographs for impulse voltage and current
	measurements
CO4	Understand and analyze the concept, design, technique, advancement and application of Lighting Phenomenon as natural cause for over voltage,
	Overvoltage due to switching surges and abnormal conditions and Principal of insulation coordination
CO5	Understand and analyze the concept, design, technique, advancement and application of Dynamic properties of dielectrics, Measurement of
	direct current resistivity, Measurement of dielectric constant and loss factor and Partial discharge measurements.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Break Down	 Break Down In Gases: Ionization processes, Townsend's criterion, Breakdown in electronegative gases, Time lags for breakdown, Streamer theory, Paschen's law, Breakdown in non- uniform field, Breakdown in vacuum. Break Down In Liquid Dielectrics: Classification of liquid dielectric, Characteristics of liquid dielectric, Breakdown in pure liquid and commercial liquid. Break Down In Solid Dielectric: Intrinsic breakdown, Electro-mechanical breakdown, Breakdown of solid dielectric in practice, Breakdown in composite dielectrics. 	8	COI
2	Generation of High Voltage and Currents	Generation of High direct Current Voltage, Generation of high alternating voltages, Generation of impulse voltages, Generation of impulse currents, Tripping and control of impulse generators	8	CO2
3	Measurement of High Voltage and Currents	Measurement of High direct Current Voltages; Measurement of High alternating & Impulse voltages; Measurement of High direct, alternating & Impulse Currents; Cathode ray oscillographs for impulse voltage and current measurements.	8	CO3
4	Over Voltage Phenomenon & Insulation Coordination	Lighting Phenomenon as natural cause for over voltage, Overvoltage due to switching surges and abnormal conditions, Principal of insulation coordination	8	CO4
5	Non -Destructive Insulation Test Techniques	Dynamic properties of dielectrics, Measurement of direct current resistively, Measurement of dielectric constant and loss factor, Partial discharge measurements.	8	CO5
	ice Books:			
		Kuffel, "High Voltage Engineering", CBS Publishers New Delhi, 2nd Edition, 2005. 'High Voltage Engineering", Tata McGraw Hill, 5th edition, 2013.		
	2 ·	Engineering", New Age Internationals (P) Limited, 3rd Edition, 2010.		
		agineering: Theory and Practice", Marcel Dekker, 1st edition, 1990.		
		o High Voltage Engineering", Prentice Hall of India, 2nd edition, 2013.		
5. 5401	ita, in introduction	The composition of the of the control, 2015.		
e-Lear	rning Source:			

						C	ourse A	Articul	ation N	Aatrix: ((Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO CO1	3	3	1	2	3							2	3	2	3			
CO1	3	3	1	2	3							2	3	2	3			
CO2	3	1	1	2	3							2	3	2	3			
CO3	3	1	1	2	3							2	3	2	3			
	3	1	1	2	3							2	3	2	3			
CO5	5	1	1	2	5	~						2	5	2	5			

Effective from Session: 201	8-19						
Course Code	EE425	Title of the Course	EHVAC & EHVDC TRANSMISSION	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
		U	EHVDC Transmission				
Course Objectives	• De	sign of EHV using softw	vare				
	• Kn	owledge of control circu	its used in power transmission network				

	Course Outcomes
CO1	Knowledge of EHVDC and EHVAC transmission and conductors used in transmission
CO2	Knowledge of switching and their effects on transmission circuits
CO3	Knowledge of single and three phase converters and design of EHV lines
CO4	Knowledge of different converters used in EHV DC transmission
CO5	Knowledge of protection circuits

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Introduction to	Need of EHV transmission, Standard transmission voltage, Comparison of EHV ac & dc transmission systems and their applications & limitations, Surface voltage gradients in conductor, Distribution of voltage gradients on sub-conductors, Mechanical considerations of transmission lines, Modern trends in EHV AC and DC transmission	8	CO1						
2	EHV AC Transmission	Corona loss formula, Corona current, Audible noise – generation and characteristics, Corona pulses their generation and properties, Radio interference (RI) effects, Over voltage due to switching, Ferro resonance, Reduction of switching surges on EHV system, Principle of half wave transmission.	8	CO2						
3	Consideration for Design of EHV Lines	Design factors under steady state limits, EHV line insulation design based upon transient over voltages, Effects of pollution on performance of EHV lines. Converter Circuits: 1-phase and 3-phase converters (properties and configurations), Cascade of converters	8	CO3						
4	EHV DC Transmission–I	Types of dc links, converter station, Choice of converter configuration and pulse number, Effect of source inductance on operation of converters, Principle of dc link control, Converter controls characteristics, Firing angle control, Current and excitation angle control, Power control, Starting and stopping of dc link	8	CO4						
5	EHV DC Transmission–II	Converter faults; Protection against over currents and over voltages; Smoothing reactors; Generation of harmonics; AC and DC filters; Multi Terminal DC systems (MTDC): Types, Control, protection and applications.	8	CO5						
Referen	ce Books:									
1. R. D.	Begamudre, "Extra Hig	h Voltage AC Transmission Engineering", Wiley Eastern, 3rdedition, 2006.								
2. K. R.	Padiyar, "HVDC Power	r Transmission Systems: Technology and System Reactions", New Age International, 2nd edition	, 1983.							
3. M. S. Naidu & V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill, 3rd edition,2004.										
4. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", Prentice Hall ofIndia, 4th edition, 2014.										
5. S. Rao, "EHV AC and HVDC Transmission Engineering and Practice", Khanna Publisher,4th edition, 2011.										

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
СО																		
CO1	3	2										2	3					
CO2	3	2										2	3	2	2			
CO3	2	3	2									2	2	3	2			
CO4	3	2	3									2	2	2				
CO5	3	2										2	3					

			Sity, Euchiow				
Effective from Session: 2018	-19						
Course Code	EE427	Title of the Course	POWER SYSTEM DYNAMICS	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	and • To • To syst • To real • To	obtain the solution of tr analyze the modeling o realize and examine the tem. recognize the concepts time domain.	about dynamics of Power systems. To develop ability for an ransient problems. f synchronous machine by applying fundamental law's. e excitation systems and response the behavior of prime mov of dynamics of synchronous generator Connected to Infinit f transient and voltage stability by various parameters and	er con	trollers by inv	s in diffe	erent on in

	Course Outcomes
CO1	Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system,
	apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.
CO2	Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State
	Performance using Equivalent Circuit of Synchronous Machine.
CO3	For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and
	examine, analyze and evaluate the characteristics by State Equations and Load Modeling.
CO4	For a given System Model, students shall be able to identify its characteristics and for Stator Equation, select suitable design of application of
	Network Equation, develop various combination for System Simulation Small Signal Analysis with Block Diagram Representation for Single
	Machine System.
CO5	Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and
	modify energy functions for direct stability
	Evaluation.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Power System Dynamics Problems	Introduction, General basic concept of Power System Stability, States of operation & System Security, System Dynamics Problems, Review of Classical Model, System Model, Analysis of Steady State Stability & Transient Stability	8	CO1
2	Modelling of Synchronous Machine	Introduction, System Simulation, Park's Transformation, Analysis of Steady State Performance, P.U. Quantities and Equivalent Circuit of Synchronous Machine.	8	CO2
3	Excitation systems & Prime Mover Controllers	Simplified Representation of Excitation Control, Excitation systems, Modelling, Standard Block Diagram, State Equations, Prime Mover Control System, Transmission Line & Load Modelling	8	CO3
4	Dynamics of Synchronous Generator Connected to Infinite Bus	System Model, Stator Equation, Rotor equations, Application of Model 1.1, Network Equation, Calculation of Initial Conditions, System Simulation Small Signal Analysis with Block Diagram Representation for Single Machine System, Synchronizing & Damping Torque Analysis, State Equation.	8	CO4
5	Modelling and Analysis of Transient and Voltage Stability	Simulation for Transient Stability Evaluation; Application of energy functions for direct stability evaluation; Voltage Stability: Introduction, Factors affecting voltage collapse, Analysis and comparison with angle stability.	8	CO5
	nce Books:	n Dynamics: Stability & Control", BS Publications, 2nd edition, 2002		
		Control system engineering", Wiley Eastern Ltd, 3rd edition, 2002		
		c Control system", Prentice Hall of India Pvt. Ltd, 8th edition, 2003.		
4. Prabh	a Kundur, "Power Syste	em Stability and Control", Tata McGraw Hill, 5th edition, 2014		
e-Leai	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	2										2	3	1			
CO2	3	3	2	2	2								2	3	1			
CO3	3	3	1									2	2	3	1			
CO4	3	2	3	2	3					2	2		2	3				
CO5	3	3	3			2	1						2	3	1			

Effective from Session: 201	8-19						
Course Code	EE431	Title of the Course	UTILIZATION OF ELECTRICAL ENERGY AND TRACTION	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None	5	-		
	• To	impart the detail knowle	edge of different types of Electrical Heating				
	• To	understand about Electr	ical Welding, Refrigeration and Air conditioning.		T P 1 0		
Course Objectives	• To	study different definitio	ns of Illuminations and its Laws				
	• To	understand types of Ele	ctric Traction, system of track electrification, Tractive effort	t.	3 1 0		
	• Stu	dy of salient features of	traction Drives. To impart knowledge of Diesel Electric Tra	action			

	Course Outcomes
CO1	Conceptualize fundamental elements of electrical heating, designing of different elements used in electrical heating, understand working and
	application of different type of furnaces.
CO2	Understand different types and working of electrical welding, understand different instrument used for electrical welding. Acquire detailed
	knowledge electro-deposition, laws of electrolysis and its application in different field.
CO3	Acquire knowledge of different Laws of Illuminations, Develop the designing skill for indoor and outdoor lighting system. Understand
	construction and operation of Refrigeration and air conditioner system, Analyze the electric circuit and Learn the maintenance of domestic
	refrigerator.
CO4	Understand operation, mechanism and types of track electrification used of a traction system. Acquire detailed knowledge of different
	terminology used in electric traction.
CO5	Acquire knowledge of different motor drives operation, Analyze starting, braking and of different type of motor drives used for traction Apply
	the concepts of AC-DC and DC-DC Converters for traction drives, Implementation of bridge transition speed control of a DC traction drive.
	Understand the concept of diesel electric traction.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Electric Heating	Advantages and methods of electric heating, Resistance heating, Electric arc heating, Induction heating, Dielectric heating.	8	CO1							
2	Electric Welding	Electric Arc Welding, Electric Resistance welding, Electronic welding control Electrolyte Process: Principles of electro-deposition, Laws of electrolysis, Applications of electrolysis	8	CO2							
3	Illumination	Various definitions, Laws of illumination, Requirements of good lighting, Design of indoor lighting and outdoor lighting systems. Refrigeration and Air Conditioning: Refrigeration systems, Domestic refrigerator, Water cooler, Types of air conditioning, Window air conditioner	8	CO3							
4	Electric Traction I	Types of electric traction; Systems of track electrification; Traction mechanics - Types of services, Speed time curve and its simplification, Average and schedule speeds; Tractive effort; Specific energy consumption; Mechanics of train movement; Coefficient of adhesion and its influence.	8	CO4							
5	Electric Traction II	Salient features of traction drives, Series – parallel control of dc traction drives (Bridge transition) and energy saving Power Electronic control of dc and ac traction drives, Diesel electric traction	8	CO5							
Referen	nce Books:										
1. H. Pa	rtab, "Art and Science o	f Electrical Energy", Dhanpat Rai & Sons, 2014									
2. G.K.	Dubey, "Fundamentals of	of Electric Drives", Narosa Publishing House, 2nd edition, 2015.									
3. H. Partab, "Modern Electric Traction", Dhanpat Rai & Sons, 2013											
4. C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Publications, 3rd edition, 2010											
5. E. Op	5. E. Open Shaw Taylor, "Utilization of Electric Energy", Orient Longman, Reprint 2011.										

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	3	3	1	2	2	2			2		1	2	2	3			
CO2	3	3	2	1	2	2	2			2		1	2	1	3			
CO3	3	3	3	3	3	3	3	2	3	3	1	2	2		2			
CO4	3	3	3	1	1	3		1		1		2	2	1	2			
CO5	3	3	2	2	1	2	1	1	1	2		3	2					

			I SILY, LUCKIOW				
Effective from Session: 2018	8-19						
Course Code	EE435	Title of the Course	HIGH VOLTAGE DC TRANSMISSION	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To familiari To expose t To Develop transmission e To Formula control schem To Analyze To Develop type of protece To Study an protection sch To Review To Recogni 	ize the students with the he students to the harmonic the knowledge of HVD over conventional AC to te and solve mathematic hes as well as starting ar the different harmonics o harmonic models and of the north of the filters. Ind understand the natur hemes for the same. the existing HVDC syst	cept of HVDC Transmission system. HVDC converters and their control system. Converters and faults occur in the system and their prevention. Converters and the applicability ransmission and HVDC converters and the applicability ransmission. Cal problems related to rectifier and inverter control method and stopping of DC links as generated by the converters and their variation with the character use the knowledge of circuit theory to develop filters and a e of faults happening on both the AC and DC sides of the terms along with MTDC systems and their controls the advancements in both the existing systems and HVDC s	s and le ange in ssess t conve	earn ab n firing he requ rters an	out diffe angles. irement d form	erent t and ulate

	Course Outcomes
CO1	Choose intelligently AC and DC transmission systems for the dedicated application(s).
CO2	Identify the suitable two-level/multilevel configuration for high power converters.
CO3	Select the suitable protection method for various converter faults.
CO4	Decide the configuration for harmonic mitigation on both AC and DC sides.
CO5	Identify suitable reactive power compensation method and basics of MTDC system.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	General Aspects of HVDC Transmission	Introduction to HVDC Transmission, Comparison of HVAC and HVDC systems (Economics of power transmission, Technical Performance and Reliability), Type of HVDC Transmission systems, Description of HVDC transmission system (Types of DC Links and Converter), Planning for HVDC transmission, Modern trends in HVDC technology	8	CO1
2	Converters	Simple rectifier circuits, Rectification circuits for HVDC transmission, HVDC converters (Line commutated and Voltage Source converters), Analysis of Graetz Bridge with and without overlap, Pulse number, 12 pulse firing schemes	8	CO2
3	HVDC System Control	HVDC system control (Principles of DC link control, Firing Angle Current and extinction angle control), Converter mal-operations, Commutation failure, Converter control characteristics, Power Control, Starting and stopping of converter bridge, Converter protection, DC Breakers.	8	CO3
4	Reactive Power And Harmonics Control	Reactive power requirements, Sources of Reactive Power, Smoothing reactor and DC Lines, Generation of Harmonics, Characteristic and Non-characteristic Harmonics, Troubles due to Harmonics, Harmonics Filters (AC Filters and DC Filters), Active Filters and Passive Filters	8	CO4
5	Power Flow Analysis	Interaction between AC and DC system, Power Flow in AC/DC Systems, DC system model, Basics of Multi-terminal DC (MTDC) system, Types of Multi-terminal DC (MTDC) system, Multi-In feed DC System	8	CO5
Referen	ce Books:			
1. Padiy	ar K.R., "HVDC transm	ission system", Wiley Eastern Ltd., New Delhi, Second Edition, 2015.		
2. Arrila	ga J., "High voltage dire	ect current transmission", Peter Pereginver Ltd. London, U.K., 1998.		
3. Kim I	Bark E.W., "Direct curre	nt transmission – Vol.1", Wiley Inter Science, New York, 1971.		

e-Learning Source:

						C	ourse A	rticul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7								
C01	3	3	2								2	2	1		1											
CO2	3	3	2	2	2							2	2	2												
CO3	3	3	1									1	2	2												
CO4	3	2	3	2	3					2	2	3	1	2	1											
CO5	3	3	3			2	1				2	3	1													

Effective from Session: 201	8-19						
Course Code	EE437	Title of the Course	ELECTRICAL DISTRIBUTION SYSTEM & AUTOMATION	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives							

	Course Outcomes
CO1	Knowledge of energy losses, OHTL and UG lines
CO2	Analyze and modelling of distribution system
CO3	Design of distribution system
CO4	Protection analysis of distribution system
CO5	Knowledge of automation systems and sensors

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Industrial and commercial distribution system	Energy Loss in distribution system, System ground for safety and- protection, Comparison of overhead lines and underground cable system	8	CO1						
2	2 Network model Power flow, short circuit and calculations, Distribution system reliability analysis, Reliability concepts, Markov model, Distribution network reliability, Reliability performance									
3	Distribution system expansion planning	Load characteristics, Load forecasting, Design concepts, Optimal location of sub-station, Design of radial lines, Solution technique	8	CO3						
4	System protection	Requirement; Fuses and section analyzers; Over current, under voltage and under frequency protection; Co-ordination of protective device	8	CO4						
5	Industrial Automation and Control	Introduction to Industrial Automation and Control Architecture of Industrial Automation Systems, Introduction to sensors and measurement systems, Temperature measurement, Pressure and Force measurements, Displacement and speed measurement, Flow measurement techniques, Measurement of level.	8	CO5						
Referen	ce Books:									
1. Pabla.	. A.S., "Electrical Power	Distribution, System", Tata McGraw Hill, 1981.								
2. Tuvar	Goner, "Electrical Pow	er Distribution System", McGraw Hill, 1986.								
3. Johnson C.D., "Process control instrumentation technology", Prentice-Hall, New Delhi,2006										
4. Kalsi H.S., "Electronic Instrumentation", McGraw Hill, 3rd edition, New Delhi, 2010										
e-Lear	rning Source:									

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PS	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	2	2									2	3		2			
CO2	2	3	3										2	3				
CO3	3	2	3									3	3	3	3			
CO4	3	2	2									3	3					
CO5	3											3	3					

Effective from Session: 201	8-19								
Course Code	EE439	Title of the Course	HIGH POWER SEMICONDUCTOR DEVICES	L	Т	Р	С		
Year	4 th	Semester	7 th	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						
Course Objectives	• Kn	Knowledge of latest semiconductor switches							
Course Objectives	• An	ply knowledge of thyrig	stors in hardware based models						

vbł ugu

	Course Outcomes
CO1	To understand the construction and working of power switches like diode, transistor, IGBT and their practical applications in industries.
CO2	Analysis of different types thyristors their practical implementation. To understand the different methods to turn it on and their blocking characteristics.
CO3	To understand the structure and operation of MOSFET, Silicon IGBT, Silicon carbide IGBT and its practical application in electrical devices for industries.
CO4	To understand the operation and structure of VMOS and DMOS and its practical application in electrical devices for industries.
CO5	To understand the operation and structure of silicon MCT, BRT, EST, Gallium Nitride devices and its practical application in electrical devices for industries.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Introduction	Power Switching Waveforms, High Voltage Power Device Structures, Breakdown Model for Silicon, High Voltage Applications	8	CO1						
2	SCR	Operation & structure of Silicon Thyristors, Silicon Carbide Thyristors & Silicon GTO, Blocking characteristics	8	CO2						
3	Power Bipolar Transistors	Operation and structure of Silicon IGBT, SiC Planar MOSFET Structures and Silicon Carbide IGBT	8	CO3						
4	Power MOS Devices	Operation and structure of V MOS and DMOS, Heat Transfer in Power MOS devices, Device packaging	8	CO4						
5	High Voltage Devices	Operation and structure of silicon MCT, silicon BRT, silicon EST, Gallium nitride devices	8	CO5						
Referen	ce Books:									
1. B. Jay	yant Baliga, "Fundamen	tals of Power Semiconductor Devices", 3rd edition, Springer, 2008								
2. B. Jay	ant Baliga, "Advanced	High Voltage Power Device Concepts", 1st edition, Springer, 2011								
3. Rober	rt Perret, "Power Electro	nics Semiconductor Devices", 1st edition, Wiley, 2009								
4. Tadał	niro Ohmi, Andre A. Jae	cklin, "Power Semiconductor Devices & Circuits", 1st edition,Springer, 1992								
5. Josef Lutz, Heinrich Schlangenotto, Uwe Scheuermann, Rik De Doncker, "SemiconductorPower Devices", Springer, 1st edition, 2011										
e-Lean	rning Source:									

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	1	1	1	1	2	2	1					3	2	1			
CO2	3	2	3	2	2	3	1	1	1				3	1	2			
CO3	3	2	3	2	2	2	2	1	1		1	2	3	2	2			
CO4	3	2	3	2	3	2	2	1	1		3	2	3	2	2			
CO5	3	2	3	2	3	2	2		1		3	2	3	2	2			

Effective from Session: 2018	3-19						
Course Code	EE441	Title of the Course	FLEXIBLE AC TRANSMISSION SYSTEMS	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives			neers about the Flexible AC Transmission devices and the ive/reactive power control.	eir app	lication	is in po	wer

	Course Outcomes
CO1	Understand the importance of controllable parameters and benefits of FACTS controllers.
CO2	Know the significance of shunt, series compensation and role of FACTS devices on system control.
CO3	Analyze the functional operation and control of GCSC, TSSC and TCSC.
CO4	Describe the principles, operation and control of UPFC and IPFC.
CO5	Knowledge of UPFC and IPFC

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction to FACTS	Challenges and needs, Power Flow in AC transmission line, Power flow control, Description and definition of Flexible AC Transmission Systems (FACTS) controllers, Static power converter structures.	8	CO1					
2	Power Semiconductor devices	Types of power semiconductor devices, Voltage-sourced and Current-sourced converters, Converter output and harmonic control, Power converter control issues, Reactive power compensation.	8	CO2					
3	Shunt Compensation	Static VAR compensator (SVC), Static Synchronous Compensator (STATCOM), Thyristor controlled Reactor (TCR) and Thyristor switched Reactor (TSR) Operation and control, Configurations and applications	8	CO3					
4	Series Compensation:	Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Series Compensator (SSSC), Operation and control, Configurations and applications. Voltage and Phase angle regulators: Thyristor controlled voltage regulators (TCVRs) and Thyristor controlled phase angle regulators (TCPARs) operation and control.	8	CO4					
5	Shunt-Series compensation	Unified power flow controller (UPFC), Power flow studies with FACTS controllers, Operational constraints, Interline Power flow Controller (IPFC), Operation and control.	8	CO5					
Referen	ce Books:								
1. Narai	n G. Hingorani, " Under	standing FACTS", Wiley IEEE PRESS, Reprint 2015.							
2. K.R. I	Padiyar, "FACTS Contr	ollers in Transmission & Distribution", 3rd edition 2017.							
3. V. K. Sood, "HVDC and FACTS Controllers: Applications of Static Converters in Power Systems", 2004.									
4. Enriq	ue Acha, C.R. Feurte, E	squivel, "Modelling and Simulation in Power Networks", Wiley-India edition, 2004.							

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	3	3		1				2	1			2	2	2			
CO2	3	3	3	1			3		3	1	3		2	2	2			
CO3	3	3	3	1					3	1	3	1	2	2	2			
CO4	3	3	3	1					3	1		1	2	2	2			
CO5													2	2	2			

	-	need at emite	Bity, Luckilow				
Effective from Session: 2013	8-19						
Course Code	EE443	Title of the Course	SPECIAL ELECTRICAL MACHINES	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To get knowservomotor. To attain knowservomotor knowservomotor. 	owledge of working of out different types of m	scheme nal features of special machines such as single-phase syn stepper motor and switched reluctance motor and their drive agnets and their application in different machines and application of linear induction motor and universal mot	e circu		otor an	ıd ac

	Course Outcomes
CO1	Evaluate the performance special induction motors and slip power recovery schemes
CO2	Analyze the performance of single-phase synchronous motor and ac servomotor
CO3	Evaluate the performance of drive circuit of stepper motors
CO4	Knowledge of permanent magnet machines
CO5	Knowledge of linear induction motor and universal motor used for special applications

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Poly-phase AC Machines	Construction and performance of double cage and deep bar three phase induction motors, E.m.f. injection in rotor circuit of slip ring induction motor, Concept of constant torque and constant power controls, Static slip power recovery control schemes (constant torque and constant power).	8	CO1
2	Single phase synchronous motor:	Construction, Operating principle and characteristics of reluctance and hysteresis motors. Two Phase AC Servomotors: Construction, Torque-speed characteristics, Performance and applications.	8	CO2
3	Stepper Motors:	Principle of operation; Variable reluctance, Permanent magnet and Hybrid stepper motors; Characteristics, drive circuits and applications. Switched Reluctance Motors: Construction, Principle of operation, Torque production, Modes of operation, Drive circuits.	8	CO3
4	Permanent Magnet Machines	Types of permanent magnets and their magnetization characteristics, Demagnetizing effect, Permanent magnet dc motors, Sinusoidal PM ac motors, Brushless dc motors and their important features and applications, PCB motors, Introduction to permanent magnet generators.	8	CO4
5	Single Phase Commutator Motors:	Construction, Principle of operation; Characteristics of universal and repulsion motors; Linear Induction Motors: Construction, Principle of operation, Linear force and applications.	8	CO5
Referen	ce Books:			
1. P.S. E	Bimbhra "Generalized T	heory of Electrical Machines", Khanna Publishers Limited, 5th Edition, 4th Reprint, New Delhi,	2000	
2. P.C. S	Sen, "Principles of Elect	rical Machines and Power Electronics", John Wiley & Sons, 2nd edition, 2001.		
3. G.K. 1	Dubey, "Fundamentals of	of Electric Drives", Narosa Publishing House, 2nd edition, reprint 2017.		
4. Cyril	G. Veinott, "Fractional	and Sub-fractional horse power electric motors", McGraw Hill International, 1986		
5. M.G.	Say, " Alternating curre	nt Machines", Pitman & Sons, 4th edition, 1976		

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix: ((Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	2	2	1								1	2	2	2			
CO2	3	2										1	3	2	2			
CO3	3	3	2	2								1	3	2	1			
CO4	3	2										1	2	1	2			
CO5	3	1										1	3	1	1			
					1 1	C	1	A B			1 4.	2 0 1 4	at al Car					

Effective from Session: 2018	3-19						
Course Code	EE445	Title of the Course	ELECTRICAL SYSTEM & SUBSTATION	L	т	Р	С
eourse coue	EETTE	The of the course	DESIGN	-	-	-	Ŭ
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
	• To	develop knowledge of g	eneral aspects of electrical system design				
	• Hay	ving Knowledge of Med	ium and HV installations				
Course Objectives	• Hav	ving knowledge of insta	llation of transformers, Switchgears and protective devices				
	• To	get knowledge of Desig	n of illumination systems				
	• To	get the knowledge of di	fferent types of substation, Substation equipment and its fun	ction.			

	Course Outcomes
CO1	
CO1	Understands the general aspects of electrical system design
CO2	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and cables for sub circuits
CO3	Understand installation of transformers, Switchgears and protective devices
CO4	Knowledge of Design of illumination systems
CO5	Knowledge of types of substation, substation equipment and its function.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	General Aspects	National Electric Code (NEC) - scope and safety aspects applicable to low and medium (domestic)voltage installations, Electric services in buildings, Classification of voltages, Standards and specifications, IE Rules, IS Codes, General aspects of the design of electrical installations for domestic buildings – connected load calculation.	8	CO1
2	Distribution board	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and cables forsub circuits; Pre-commissioning tests of domestic installations; Medium and HV installations –Selection of cables, Guidelines for cable installation & installation of induction motors.	8	CO2
3	Transformers	Selection and installation of transformers, Switchgears and protective devices; Design of indoor and outdoor 11 KV substation up to 630 KVA: Design of Earthing system - Pipe, plate and mat earthing; Lightning arresters; Metering and protection; HT and LT breaker control panels; Selection of standby generator, installation and its protection.	8	CO3
4	Illumination systems	Design of illumination systems – Yard lighting, Street lighting and Flood lighting; Design and layout of installation for recreational or assembly buildings and high rise building; Design of Electrical system related to fire fighting, lifts and escalators.	8	CO4
5	Substation	Types of Substation, Substation equipment and its function, Bus bar arrangement, Single busbar systems and duplicate bus-bar systems, Capacitor bank, Earthing practices, Substation automation.	8	CO5
Referen	nce Books:			
1. M.K.(Giridharan, "Electrical S	System Design". I.K. International Pvt. Ltd., 2011.		
2. Raina	a & Bhattacharya, "Elect	rical Design Estimating and Costing". New Age International,1st Edition, 1991.		
3. Burea	au of Indian Standards p	ublications, "National Electric Code", 1986.		
4. S.N. S	Singh, "Electric Power (Generation, Transmission & Distribution", PHI, 2015		
1. M.K.(Giridharan, "Electrical S	System Design". I.K. International Pvt. Ltd., 2011.		
-				

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	2		1								1	3		2			
CO2	3	2					1					1		2				
CO3	3	1										2		3				
CO4	3	2										1		3				
CO5	3	2					1					1	2					

		integral e integ	Isity, Lucknow				
Effective from Session: 2018	3-19						
Course Code	EE447	Title of the Course	ELECTRIC VEHICLES	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	1. Basic Electrical Engg. 2.Electrom echanical Energy Conversion I and II 3.Power Electronics	Co-requisite	None				
Course Objectives	 Kn Kn Kn 	owledge of current sense owledge of charge contr	es of electric vehicles es of converters used in electric vehicles ors and speed sensors used in electric vehicles rollers and batteries used in electric vehicles of electric vehicles on the basis of performance				

	Course Outcomes
CO1	Knowledge of different electric vehicles and their environmental impact
CO2	Knowledge of different types of converters used in electric vehicles
CO3	Knowledge of current sensors and speed sensors used in electric vehicles
CO4	Knowledge of charge controllers and batteries used in electric vehicles
CO5	Identify different types of electric vehicles

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Electric Vehicles	Introduction, Types of electric vehicles, History of Electrical Vehicles (EV), Configurations of Electric Vehicles, Relative merits and their limitations, Applications, Environmental impact.	8	CO1
2	Converters	Introduction and working of semiconductor power diode, Thyristors and MOSFET. Power electronic converters: DC-DC and DC-AC converters for electric and hybrid vehicles.	8	CO2
3	Motors & Sensors: EV motors	PMDC, Series motors, Induction Motors, Switched reluctance motor. Sensors: Hall Effect sensors, optical encoders, current and speed sensing, closed loop speed control of vehicle.	8	CO3
4	Battery and Charge Controllers: Battery	Basic, Type, Parameters, Capacity, Discharge Rate, State of Charge, Depth of Discharge, Characteristics, Properties of Batteries. Charge Controllers: Purpose, Working and Limitations.	8	CO4
5	Electric Vehicles: Hybrid Electric Vehicles	Types, Performance Parameters, Advantages and Disadvantages, Limitations. Electric Cars: Emerging Trend, Hybrid Cars, Acceleration and Speed Characteristics, Fuel Cell Vehicles: Fundamentals, Advance Hybrid Electric Vehicles	8	CO5
Referen	nce Books:			
1. James	s Larminie, "Electric Ve	hicle Technology Explained", John Wiley & Sons, 2003.		
2.Mehro	lad Ehsani, Yimin Gao,	Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals", CRC Pres	s, 2010.	
3.Sande	ep Dharmeja, "Electric	Vehicle Battery System", Newnes, 2011		

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO CO1	2						3					1	2	2	2			
CO2	3					2	-					1	3	3	2			
CO3		3	2									1	3	2	2			
CO4	3	1										2	2	3	2			
CO5					1		3					2	2	3	2			

Effective from Session: 2022	2-23						
Course Code	EE449	Title of the Course	ENERGY CONSERVATION AND ENERGY AUDIT	L	Т	Р	С
Year	4 th	Semester	7 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To sec 	make aware the student provide the knowledge tor.	ge of the energy management. s about Lighting System. of decentralized energy supply to agriculture, industry, com a and distribution efficiency, Energy conservation in buildin		l and ho	ousehold	d

	Course Outcomes								
CO1	Student understands the basic concept of energy, limitations faced in the energy conservation, and classification & importance of energy								
	auditing.								
CO2	Ability to understand the concepts of energy audit and produce the knowledge of energy conservation in boiler and steam based systems.								
CO3	After completion of the subject, the understanding of the factors affecting the energy conservation and design consideration would be clear.								
CO4	For a given refrigeration and air conditioning system, students shall be able to identify its characteristics. Select suitable design of application								
	with various combination for System.								
CO5	For a given Energy management system, student shall be able to define its process, different types of control strategies, and compensators.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Introduction	Energy Scenario, Role of Energy Managers in Industries, Energy monitoring, Auditing & targeting, Economics of various Energy Conservation schemes, Total Energy Systems	8	CO1						
2	Energy Audit	Energy Audit, Types of energy audit, Identification of energy conservation opportunities, Various Energy Conservation Measures in Steam Losses in Boiler, Energy Conservation in Steam Systems –Case studies.	8	CO2						
3	Energy conservation	Classification of energy conservation measures, Energy conservation in Centrifugal pumps, Fans & Blowers, Air compressor energy consumption & energy saving potentials, Design consideration.	8	CO3						
4	Refrigeration & Air conditioning	Heat load estimation, Components of Heating ventilation and air conditioning (HVAC) system, Energy conservation opportunities in HVAC system-Case studies, Energy Efficiency in Lighting-Case studies.	8	CO4						
5	Energy management & process	Organizational background desired for energy management motivation; Detailed process of M&T Thermostats; Boiler controls- proportional, differential and integral control; Optimizers; Compensators.	8	CO5						
Referen	ce Books:									
1. Easto	p T.D. & Croft D.R., "E	nergy Efficiency for Engineers and Technologists", Logman Scientific & Technical, ISBN-0-58	2-03184, 199	90.						
2. Reay	D.A., "Industrial Energy	y Conservation", Pergamon Press, 1st edition,1977.								
3. Kothari D. P., Nagrath I. J., "Power System Engineering", Tata McGraw-Hill Co., 2nd Ed., 2008.										
4. Singh	4. Singh S., Rathore U., "Energy Management", S. K. Kataria & sons, 2nd edition, 2017.									

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSO	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO CO1	1	2	3	1					1			1	2	1	2			
CO2	1	3	3	1		1	2	1		1		1	3	1	3			
CO3	1	3	2	2		1	2	1		1		1	2	1	2			
CO4	1	3	2	3		1	2	1		1		1	2	3	2			
CO5	1	2	3	2		1	2	1		1		1	2	1	2			

Effective from Session: 2018	8-19						
Course Code	EE 402	Title of the Course	Power system protection lab	L	Т	Р	С
Year	4 th	Semester	7 th	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	• To • To	understand and exp understand and exp	beriment with operation of relays. Deriment with operational characteristics of relays Deriment with impedance calculation of transform Deriment with voltage ratio test of Transformer.				

	Course Outcomes								
CO1	Adopt, perform, analyze and implement the operational characteristic of under and over voltage relays.								
CO2	Adopt, perform, analyze and implement the operational characteristic of IDMT and earth fault relays.								
CO3	Adopt, perform, analyze and implement the operational characteristic of differential and thermal relays.								
CO4	Adopt, perform, analyze and implement the to study and calculate impedance and transformation ratio of the given								
	transformer.								

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	Operational characteristic of under voltage relay.	2	1
2	Operational characteristics of over voltage relay.	2	1
3	Operational characteristic of IDMT relay.	2	2
4	Operational characteristic of earth fault relay.	2	2
5	Operational characteristic of differential relay.	2	3
6	Operational characteristic of thermal relay.	2	3
7	To study and calculate impedance of the given transformer.	2	4
8	To study and calculate voltage ratio test of the given transformer.	2	4

					Course	Articula	tion Mat	rix: (Ma	pping of	COs with	n POs and	d PSOs)				
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 20	018-19									
Course Code	EE404	Title of the Course	Electric Drive Lab	L	Т	Р	С			
Year	IV	Semester	VII	0	0	2	1			
Pre-Requisite		Co-requisite	EE403							
	To impa	art knowledge on Perfo	rmance of the fundamental control practices associ	ated v	with A	C and I	DC			
Course Objectives	machines (starting, reversing, braking, plugging, etc.) using power electronics.									
Course Objectives	• To evaluate the use of microcontroller-based analysis tools to review the major classes of									
	machin	es and their physical	basis for operation.							

	Course Outcomes
CO1	Identify relevant information to supplement to the Electric Drives (EE403) course.
CO2	Set up control strategies to synthesize the voltages in dc and ac motor drives.
CO3	Develop testing and experimental procedures applying basic knowledge in electrical circuit analysis, electrical machines, power
	electronics, and microprocessors.
CO4	Combine the use of microcontroller-based tools relevant to electrical Drives with practical laboratory experimentation.

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	To study the single phase half controlled bridge convertor.	2	1,3
2	To study the single phase fully controlled bridge convertor.	2	1,3
3	To study control of 3-phase induction motor using v/f control.	2	1,2
4	To study the dc motor speed controller.	2	1,2
5	To study MOSFET based chopper motor controller.	2	1,4
6	To study micro controller based speed control of 1-phase induction motor by voltage control.	2	1,2,4
7	To study the micro controller based single phase dual converter.	2	1,3,4
8	To study the micro controller based 3-phase fully controlled bridge converter.	2	1,3,4

					Cours	e Artic	ulation	Matrix:	(Mappi	ng of COs	with PO	s and PSO	s)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	2	1	2				1				2	3	2		
CO2	1	3		2	3								3		2	
CO3	2	1	3	2			2		2	1		2		2	1	
CO4	1			1		2					2	2	2		1	

Effective from Session: 2022	2-23						
Course Code	EE-513	Title of the Course	Advance Power Electronics	L	Т	Р	С
Year	1 st	Semester	1 st	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	UseKnoIden	e of switching technique owledge and concept of ntify and apply concept	voltage source inverter. s/schemes and current source inverters. multilevel inverters, its applications and control of resonant converters. s rectifiers and matrix converters.				

	Course Outcomes
CO1	Know about the concepts of voltage source inverter
CO2	Identify and apply switching techniques/schemes and current source inverters
CO3	Know about concept of multilevel inverters, its applications and control.
CO4	Identify and apply concept of resonant converters
CO5	Know about synchronous rectifiers and matrix converters

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Switch-Mode	Basic concepts of voltage source inverter (VSI), current source inverters (CSI), single phase	8	CO1
	Inverters	half bridge, full bridge and three phase bridge inverters.		
2	Switching	PWM switching strategies, Selective Harmonic Elimination method, other inverter switching	8	CO2
	Strategies	schemes, Modulation index, Modulation frequency and its effect on switching	-	
3	Multi-Level	Need for multilevel inverters, Types, three level, five level inverter operation and analysis.	8	CO3
	Inverters	Applications of multilevel inverters and control.	-	~~ .
4	Resonant Converters	Basic resonant circuit concepts, Load resonant converters, series and parallel, resonant switch converters – Zero voltage switching (ZVS), Zero current switching (ZCS), comparison of resonant converters.	8	CO4
5	Miscellaneous Converters	Multilevel converters topologies: Cascaded, NPC, Flying Capacitor MLI, Synchronous rectifiers, matrix converters,	8	CO5
Referen	ce Books:			
1. Ned M	Aohan, "Power Electron	ics Converters, Applications, and Design" John Wiley (SEA), 3rd Ed 2014.		
2. M. H.	Rashid "Power Electron	nics" PHI Learning		
3. G. K.	Dubey, "Power Semi-C	Conductor Controllers", Wiley Eastern, 2nd Edition, 2012.		
4. R W I	Erickson and D Maksim	ovic "Fundamental of Power Electronics" Springer, 2ndEdition.		
5. M.H.	Rashid, "Hand book of	Power Electronics", 4th Edition,2013.		
e-Lear	ning Source:			
	0			

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSO	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	1	1	3	3	1					1	2	2			
CO2	3	2	2	2	3	3	3						1	2	2			
CO3	3	2	2	1	1	3	3	1					1	2	1			
CO4	3	2	2	2	3	3	3						3	2	1			
CO5	3	3	3	3	3	3	2						2	3	1			

Effective from Session: 2022-23							
Course Code	EE-514	Title of the Course	Power Apparatus & System Modelling	L	Т	Р	С
Year	1 st	Semester	1 st	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	То То То	develop knowledge on evaluate the performanc analyze governors for th	ental concepts of application of Parks transformation principles of modelling of synchronous generators ce of different excitation systems hermal and hydro power plant cledge and understanding about the models of transmission lin	ne, trar	nsforme	er and lo	ad

	Course Outcomes
CO1	Apply Parks transformation technique
CO2	Understands the basic concept of modelling of synchronous generators
CO3	Evaluate the performance of AC and DC excitation system
CO4	Analyze governors for thermal and hydro power plant
CO5	Understand different models of transmission line, transformer and load

UnitNo.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Synchronous Generator Modeling	Schematic diagram, equivalent circuit, Starting method, balanced operation, Park's transformation (dqo transformation)	8	CO1
2	Dynamic Modeling of Synchronous Generator	Modeling of synchronous generator with damper windings; Synchronous Machine Parameters: operational and standard, Effect of Saturation on Synchronous Machine Modelling.	8	CO2
3	Modelling of Excitation systems	Excitation system requirements, Types of Excitation system, Control and protective function of Excitation system, Modelling of various Excitation system, IEEE type various DC, AC and Static models.	8	CO3
4	Prime Movers Modelling	Steam turbine and Governing system: Various configurations of Steam turbine of fossil- fueled and nuclear units, Modelling of Steam turbine and its governing systems. Hydraulic turbine and Governing system : Hydraulic turbine transfer function, linear and Non- linear turbine model, Modelling of Governors for Hydraulic turbine	8	CO4
5	Modelling of Other Power System Components	Induction Motor, Synchronous Motor, Transformers, transmission lines, Static and Dynamic loads, Selected FACTS Controllers (SVC and TCSC).	8	CO5
Reference Bo	ooks:			
. A.A. Foud &	P.M. Anderson, "Power	System Stability and Control", Galgotia Press, New Delhi, 2014		
L. L.P. Singh, '	P.S. Analysis and Dynar	nics", Wiley Eastern, Delhi, 2014		
3. P. Kundur, "	Power System Stability a	und Control", Mc-Graw Hill, 2010		
. K. R. Padiya	r, "Power System Dynam	nics: Stability and Control", B.S. Publication, 2008		
e-Learning	Source:			

						C	ourse	Articul	ation N	Matrix:	(Mappi	ng of CO	s with PO	s and PSC	Os)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО																		
CO1	3	2		1								3	3	2	3			
CO2	3	2						1				3	3	2	2			
CO3	3	1									2	3	3	2	3			
CO4	3	2									1	3	3	2	2			
CO5	3	2						1				3	3	2	3			

Effective from Session: 2022	2-23						
Course Code	EE-515	Title of the Course	Advance Power System Analysis	L	Т	Р	С
Year	1 st	Semester	1 st	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
			, bus admittance and impedance matrices				
	• Kno	owledge of algorithm of	bus impedance matrix and short circuit studies using three-	phase	Impeda	nce Z _{BU}	JS
Course Objectives		owledge of power flow s					
	• Kno	owledge of Contingency	and security studies				
	• Kn	owledge of Modern ene	rgy control Techniques				

	Course Outcomes
CO1	Solve the problem of graph theory, bus admittance and impedance matrices
CO2	Able to attain the knowledge of algorithm of bus impedance matrix and short circuit studies using three-phase Impedance Z _{BUS}
CO3	Able to solve the problems of power flow solutions
CO4	Having knowledge of Contingency and security studies
CO5	Having knowledge of Modern energy control Techniques

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Introduction	System graph, loop, cut-set and incidence matrices; Algorithms for the formation of bus admittance and impedance matrices, Three-phase Admittance YBUS and Impedance ZBUS matrices;Optimal load flow	8	CO1				
2	Power flow solutions	Gauss-Seidel, Newton-Raphson, Approximation to Newton-Raphson Method, Line flow equations and Decoupled and Fast decoupled techniques.	8	CO2				
3	Fault Analysis	Symmetrical faults, Fault calculations using ZBUS, Unsymmetrical faults-Problems on various types of faults.	8	CO3				
4	Contingency and security studies	Factors affecting security, State transition diagram, Contingency analysis using network sensitivity method and AC power flow method.	8	CO4				
5	Modern energy control Techniques	Modern energy control centres, Introduction to Supervisory Control and Data Acquisition in power systems(SCADA), benefit of SCADA, Remote terminal and connection, Human machine interface	8	CO5				
	ce Books:							
1. G.W.	Stagg & A.H. Al-Abiad	, "Computer Methods in Power Systems", Mc-Graw Hill, 1998.						
2. Haadi	Sadat, "Power System	Analysis", Tata McGraw Hill, 2002						
3. M.A.	Pai, "Computer Technic	ues in Power System Analysis", Tata McGraw Hill, 2014						
4. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", Tata McGraw Hill, 2014								
e-Lear	rning Source:							
- C Leai	ining bour co.							

						С	ourse A	rticul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PS	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	2	3	3	3		2							2	2	2			
CO2	2	3	3	3		2							2	3	2			
CO3	1	3	3	3		2							2	2	2			
CO4	1	2	3	3		2							1	2	3			
CO5	2	3	3	3		2							1	3	3			

Effective from Session: 2017	7-18						
Course Code	EE-517	Title of the Course	POWER SYSTEM DYNAMICS & CONTROL	L	Т	Р	С
Year	1 st	Semester	1 st	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	and • To • To sys • To real • To	obtain the solution of t analyze the modeling of realize and examine the tem. recognize the concepts time domain.	about dynamics of Power systems. To develop ability for ar ransient problems. Esynchronous machine by applying fundamental law's. excitation systems and response the behavior of prime mov of dynamics of synchronous generator Connected to Infinit E transient and voltage stability by various parameters and	er cont	trollers	in differ stigation	rent n in

	Course Outcomes
CO1	Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system,
	apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.
CO2	Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State
	Performance using Equivalent Circuit of Synchronous Machine
CO3	For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and
	examine, analyze and evaluate the characteristics by State Equations and Load Modeling.
CO4	For Stator Equation, select suitable design of application of Network Equation, develop various combination for System Simulation Small Signal
	and large signal analysis with Block Diagram Representation for Single Machine System,
CO5	Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and
	modify energy functions for direct stability evaluation;

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
	Analysis of	Concept of Equilibrium, Small and Large Disturbance Stability, Single Machine Infinite Bus	8	CO1
1	Dynamical	System, Modal Analysis of Linear Systems, Analysis using Numerical Integration		
	Systems	Techniques, Issues in Modelling: Slow and Fast Transients, Stiff Systems.	-	
	Modelling of a	Physical Characteristics, Rotor Position Dependent model, D-Q Transformation, Model with	8	CO2
2	Synchronous	Standard Parameters, Steady State Analysis of Synchronous Machine, and Synchronous		
	Machine	Machine Connected to Infinite Bus.		
	Modelling of	Physical Characteristics and Models, Control system components, Excitation System	8	CO3
3	Excitation and	Controllers, Prime Mover Control Systems.		
3	Prime Mover			
	Systems			
	Modelling of	Transmission Line Physical Characteristics, Transmission Line Modelling, Load Models -	8	CO4
4	Transmission	induction machine model, Other Subsystems - HVDC, protection systems.		
	Lines and Loads			
	Stability Issues in	Single Machine Infinite Bus System, Multi-machine Systems, Stability of Relative Motion.	8	CO5
5	Interconnected	Frequency Stability: Centre of Inertia Motion, Single Machine Load Bus System: Voltage		
	Power Systems	Stability, Torsional Oscillations, Real-Time Simulators.		
Referen	ce Books:			
1. K.R.F	Padiyar, Power System D	Dynamics, Stability & Control, 2nd Edition, B.S. Publications, Hyderabad, 2002.		
2. P.Kur	ndur, Power System Stat	ility and Control, McGraw Hill Inc, New York, 1995.		
3. P.Sau	er & M.A.Pai, Power Sy	vstem Dynamics & Stability, Prentice Hall, 1997.		

e-Learning Source:

T 00 /1

						С	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO CO1	3	2	2										3		1			
CO2	3	3	2	2	2								3		3			
CO3	3	3	1											3	2			
CO4	3	2	3	2	3					2	2		2		1			
CO5	3	3	3			2	1							3	2			

Effective from Session: 2017	7-18						
Course Code	EE-518	Title of the Course	Computer Aided Power System Analysis	L	Т	Р	С
Year	1 st	Semester	2 nd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Ana	ermination of network s alyze load flow using ite ilt analysis estimation					

	Course Outcomes
CO1	Analysis of power system network in term of matrices
CO2	Load flow analysis using iterative methods
CO3	Analysis of fault under balance and unbalanced condition
CO4	Estimation of the state of the power system using statistical tools
CO5	Analysis of load frequency control for single area and multi area system

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction	Solution of Linear Systems and Contingency Analysis, Matrix representation of power systems, Triangularization, Gaussian elimination, LU and LDU factorization LDLT decomposition for sparse Matrices, Optimal ordering, Overview of Security Analysis, Linear Sensitivity Factors, Contingency Selection, Calculation of Network Sensitivity Factors.	8	CO1					
2	Load Flow	Load Flow Analysis Newton–Raphson iteration, Power system applications: Power flow, Formulation of Bus admittance matrix, regulating transformers, Gauss-Seidel, Newton- Raphson and Fast Decoupled methods of power flow, Treatment of voltage-controlled buses, Accelerating factors, DC load flow.	8	CO2					
3	Power flow solutions	Short Circuit Studies, System Representation, Algorithm for formation of bus impedance matrix, Balanced fault, Sequence impedances of power system components, Unbalanced fault Analysis.	8	CO3					
4	Power System State Estimation	Power System State Estimation, Power system state estimator, Method of Least Squares, Statistics, Errors and Estimates, Test for bad data, Network Topology Processing.	8	CO4					
5	Modern control Techniques	Unit Commitment and Load Frequency Control, Constraints in UC, Solution Methods of UC, Automatic Load Frequency Control of Single Area System and Multi Area System, Steady State Instabilities.	8	CO5					
	ce Books:								
		Analysis", Tata Mc Graw Hill, 2003.							
2. A. J. V	Wood and B.F.Wollenbe	erg, "Power Generation Operation and Control", John Wiley & Sons, ICN., 2nd Edition.							
3. A. K.Mahalanabis, "Computer Aided Power system analysis and control", Tata McGraw Hill 1991 4. John J. Grainger, William D. Stevenson, JR. "Power System Analysis", McGraw Hill, 1994.									
5. Elger	d olleI, "Electric Energy	Sytems Theory- An Introduction", Tata Mc Graw Hill, 2ed. 1995.							
6. I. J. N	lagrath & D.P. Kothari,	"Modern Power System Analysis", Tata McGraw Hill,1989							
7.Wadh	wa C L, "Electrical Pow	er Systems", New Age Publication, 3ed., 2002							
0 I 001	rning Source:								

e-Learning Source:

						С	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PS	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	2	3										2	3	1			
CO2		3	2										2	3	2			
CO3	2	3	2										3	2	2			
CO4	2	3	2										3	2	3			
CO5	2	2	2										2	2	2			

Effective from Session: 2017	7-18						
Course Code	EE-519	Title of the Course	ADVANCE RELAYING AND PROTECTION	L	Т	Р	С
Year	1 st	Semester	2 nd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Apj	ply the knowledge of rel	ays in power system protection				

	Course Outcomes
CO1	To learn the basics of relays
CO2	Knowledge of relay applications
CO3	Knowledge of protection of generator, motors and transformers
CO4	Study of different types of system grounding, faults and protection
CO5	Knowledge of digital relays

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Protective Relaying	Relay terminology, Definitions, Classification, electromechanical, static and digital-numerical relays. Design-factors affecting performance of a protection scheme; faults-types and evaluation, Instrument transformers for protection.	8	CO1
2	Relay Schematics and Analysis	Over Current Relay- Instantaneous/Inverse Time –IDMT Characteristics; Directional Relays; Differential Relays- Restraining Characteristics; Distance Relays: Types- Characteristics.	8	CO2
3	Protection of Power System Equipments	Generator, Transformer, Transmission Systems, Busbars, Motors; Pilotwire and Carrier Current Schemes.	8	CO3
4	System Grounding	Ground faults and protection; Load shedding and frequency relaying; Out of step relaying; Re-closing and synchronizing.	8	CO4
5	Basic Elements Of Digital Protection	Digital signal processing, Digital filtering in protection relay, Digital Data transmission, Numeric relay hardware, relay algorithm, distance relays, direction comparison relays, differential relays, software considerations, numeric relay testing.	8	CO5
Referen	ce Books:			
1. A T J	ohn and A K Salman-Di	igital protection for power systems-IEEE power series-15, Peter Peregrines Ltd, UK, 1997		
2. C.R. I	Mason, The art and scien	nce of protective relaying, John Wiley &sons, 2002		
3. Donal	ld Reimert, Protective re	elaying for power generation systems, Taylor & Francis-CRC press 2006		
4. Gerha	ard Ziegler-Numerical d	istance protection, Siemens, 2nd ed, 2006		
5. A.R.V	Warrington, Protective R	Relays, Vol .1&2, Chapman and Hall, 1973		
6. T S.M	Iadhav Rao, Power syste	em protection static relays with microprocessor applications, Tata McGraw Hill, 1994		
7. Helm	ut Ungrad , Wilibald Wi	inkler, Andrzej Wiszniewski, Protection techniques in electrical energy systems, Marce Dekker,	Inc. 1995	
8. Badri	Ram, D.N. Vishwakarı	ma, Power system protection and switch gear, Tata McGraw Hill, 2001.		
_				

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PS	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01	3			1									1	2	1			
CO2	3	2		1									2	1	1			
CO3	3	1			1								1	2	2			
CO4	3	1		2									2	1	3			
CO5	3	1	2		1								3	1	1			

Effective from Session: 2017	7-18						
Course Code	EE 520	Title of the Course	POWER GENERATION OPERATION AND CONTROL	1	0	4	С
Year	1 st	Semester	2 nd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	eco 2. In ger 3. Int 4. Int	nomic mode, and their troduce students to the neration systems. roduce mathematical of roduce methods for sol	engineering students with power generation systems, the control. important "terminal" characteristics for thermal and h optimization methods and apply them to practical opera lving complicated problems involving both economic and se techniques with relatively simple problems.	ydroe ting pi	lectric oblem	power 5.	

	Course Outcomes
CO1	Understand the Characteristics of power generation units
CO2	Develop the knowledge of Transmission lines
CO3	Analyze the unit commitment techniques
CO4	Analyze the performance of scheduling energy
CO5	Understand the application of Gradient and Newton method

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction	Characteristics of power generation units(thermal, nuclear, hydro, pumped hydro), variation in thermal unit characteristics with multiple valves, Economic dispatch with and without line losses, lambda iteration method, gradient method, Newton's method, base point and participation factors.	8	CO1					
2	Transmission losses	Co-ordination equations, incremental losses, penalty factors, B matrix loss formula (without derivation), methods of calculating penalty factors.	8	CO2					
3	3 Unit commitment Generation with limited energy supply: take or pay fuel supply contract, composite generation production cost function, gradient search techniques.								
4	Hydrothermal Coordination	Scheduling energy, short term hydrothermal scheduling, lambda-gamma iteration method, gradient method, cascaded hydro plants, pumped storage hydro scheduling.	8	CO4					
5	Optimal power flow formulation	Gradient and Newton method, linear programming methods. Automatic voltage regulator, load frequency control, single area system, multi-area system, tie line control.	8	CO5					
Referen	ce Books:								
1. Allen	. J. Wood and Bruce F.	Wallenberg, "Power Generation Operation and Control', John Wiley & Sons, Inc., 3rd Edition 2	2011.						
2. Olle.I	.Elgerd, "Electric Energ	y Systems theory - An introduction", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th re	eprint, 2010						
3. Abhij	it Chakrabarti, Sunita H	alder, "Power System Analysis Operation and Control", PHI learning Pvt. Ltd., New Delhi, Thir	d Edition, 20)10.					
4. N.V.F	Ramana, "Power System	Operation and Control," Pearson, 2011.							
e-Lear	ning Source:								
NPTE	L								

						Cour	se Arti	culation	n Matri	ix: (Map	ping of (COs with	n POs and	d PSOs)				
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	3	2	1	1							3	3	2	1	3		
CO2	3	3	3	2	1	1						2	3	2	2	2		
CO3	3	2		1	2	2	3					3	2	2	1	3		
CO4	3	2	2	2	3	3						2		3	1	2		
CO5	3	1	1	1	1	2	1					2	3	1	2	2		

Effective from Session: 2017	7-18						
Course Code	EE-521	Title of the Course	High Voltage Testing Techniques	L	Т	Р	С
Year	1 st	Semester	2 nd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Kno	owledge of different typ	es of HV testing methods used in testing electrical equipme	nt's			

	Course Outcomes								
CO1	Determination of switching surges using impulse testing on generators								
CO2	etermination of voltage time characteristics for different specimens								
CO3	Determination of voltage time characteristics for insulators, bushings etc.								
CO4	Analyze the results of impulse and p.f. tests on dielectrics								
CO5	Analyze the transformers, capacitors and cables with different types of HV tests								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Generation of High Voltages and Currents	Need and importance of impulse testing. Study of impulse voltage and current generators Generators for Lightning and Switching Impulse Voltages, Chopped Impulse Voltages, Steep- Front Impulse Voltages, Exponential Impulse Currents, Rectangular Impulse Currents.	8	CO1
2	Volt-time characteristics I	Method of wave shaping and oscillographic measurement; Volt-time characteristics of rod-rod, sphere-sphere, rod-plane gaps.	8	CO2
3	Volt-time characteristics II	Volt-time characteristics of insulators, bushings, gaps of positive and negative polarity, horn gap, rod gap, lightning arresters – expulsion type, valve type.	8	CO3
4	Testing Techniques I	Current testing of lightning arresters – Long duration impulse current test, Operating Duty Cycle Test; Testing of dielectrics – Power frequency tests, Impulse tests; Applications of insulating materials.	8	CO4
5	Testing Techniques II	Testing of transformers – Induced over voltage test, Partial discharge test, Impulse test; Testing of Capacitors; Testing of Cables - Dielectric Power Factor Test, High Voltage Tests, Partial discharge measurement.	8	CO5
Referen	ce Books:			
1. M.S. 1	Naidu & V. Kamaraju, ''	High Voltage Engineering", McGraw-Hill, 2014		
2. C.L. V	Wadhwa, "High Voltage	Engineering", New Age International Publishers, 2014		
3. Subir	Ray, "An Introduction t	o High Voltage Engineering", Prentice Hall of India, 2004.		
e-Lear	rning Source:			

Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO СО 2 2 2 3 1 1 CO1 2 2 3 1 1 1 CO2 2 2 1 1 1 3 CO3 2 2 3 1 1 1 CO4

3

CO5

2

3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

1

1

1

PSO4

PSO5

PSO6

Effective from Session: 2017	7-18						
Course Code	EE-522	Title of the Course	Power System Stability	L	Т	Р	С
Year	1 st	Semester	2 nd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Kn	owledge of different typ	es of HV testing methods used in testing electrical equipme	nt's			

	Course Outcomes
CO1	Knowledge of different types of power system stability
CO2	To get knowledge of energy function
CO3	To attain knowledge of modelling of machines
CO4	To study about power system stabilizer
CO5	To have the knowledge of voltage stability

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Power System Stability	States of operation, Basic concepts of angular and voltage stability. Angular stability: Analysis of single machine and multi-machine systems for transient stability.	8	CO1					
2	system. Small signal stability (dynamic stability)								
3	Modeling of machines	Modeling for single machine and multi-machine systems, Synchronizing and damping torque analysis, Eigen value and time domain analysis.	8	CO3					
4	4Power System Stabilizer (PSS)Mitigation using power system stabilizer and FACTS controllers. Basic concepts in applying PSS, Control Signals, Structure and tuning of PSS Introduction to sub synchronous resonance.								
5	Voltage stability	Power-Voltage (P-V) and Reactive Power-Voltage (Q-V) curves, static analysis, sensitivity and continuation method. Dynamic analysis.	8	CO5					
Referen	ce Books:								
1. P. Ku	ndur Power System Stal	bility and Control, Mc - Graw Hill .							
2. K. R.	Padiyar Power System	Dynamics, Stability & Control, Interline Publishers, Bangalore							
3. P. Sau	ar and M. A. Pai Power	System Dynamics & Stability, Prentice Hall							
4. G.W.	Stagg & A.H. Al Abiad	Computer Methods in Power System, Mc - Graw Hill							
e-Lear	rning Source:								

						C	ourse A	rticul	ation N	latrix:	(Mappiı	ng of COs	s with PO	s and PS	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	1	1	1	1	1	1				3			2	2			
CO2	3	3	3	2	2	1					3		1	2				
CO3	3	2	2	2	2	1					3		2	3				
CO4	3	1	1	1	1	1	1				3			2	3			
CO5	3	1	1	1	1	1	1				3			2				

Effective from Session: 2017	7-18						
Course Code	EE-523	Title of the Course	Advance Electric Drives	L	Т	Р	С
Year	1 st	Semester	2 nd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Eva	owledge of AC and DC aluate performance of d delling of drives using s	rives				

	Course Outcomes
CO1	Analyze the motoring and braking operation in drives
CO2	Control the motors using different methods
CO3	Mathematical modelling of different drives topologies
CO4	Analyze the drives under unbalanced condition
CO5	Analyze different types of SM drives

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	DC Motor Drive	Characteristics of different dc motors: their speed control and braking operations: Converter fed dc motor drives: Analysis for motoring and braking operations. Dynamic modelling of dc motor drives; Closed-loop control; Dual converter fed dc motor drives.	8	CO1
2	Induction Motor Drive I	Equivalent circuit; Performance & Characteristics under motoring and braking operations. Speed control methods and their analysis: voltage control, V/f control, static-rotor resistance control	8	CO2
3	Induction Motor Drive II	Field Oriented Control of IM: configurations, mathematical modelling. VSI- and CSI- based schemes, Slip-power recovery schemes: static Scherbius and Kramer drives, Doubly-fed IM drive.	8	CO3
4	Synchronous Motor Drives I	Equivalent circuit, motoring and braking operations, Operations with non-sinusoidal power supplies; Speed control	8	CO4
5	Synchronous motor drives II	Load Commuted Inverter (LCI) fed synchronous motor drives, Switched and Synchronous reluctance motor drives	8	CO5
Referen	ce Books:			
1. "Pow	er Electronics and Moto	r Drives – Advances and Trends" IEEE Press, 2006 by B.K. Bose.		
2. "Pow	er S.C.drives" Prentice-	Hall 1989 by G.K. Dubey.		
3. "Elec	tric Motor Drives", , Mo	odeling, Analysis and Control", Prentice Hall of India, 2002 by R. Krishnan		
4. "High	Power Converters and	AC Drives"IEEE Press, A John Wiley and Sons, Inc., 2006 by Bin Wu.		
e-Lear	rning Source:			

						C	ourse A	rticul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PS	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	3										1	3	2			
CO2	3	2	2										1	2	3			
CO3	3	3	2										2	3	3			
CO4	2	2	2												2			
CO5	2	2	3										2					

Effective from Session: 2022	2-23						
Course Code	EE-611	Title of the Course	FACTS DEVICES & HVDC TRANSMISSION	L	Т	Р	С
Year	2 nd	Semester	3 rd	4	0	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To Tra To To 	impart knowledge of dif impart knowledge of c nsmission. understand working and understand working a	fferent power electronic devices in HVDC Transmission. ferent Voltage Source Converters used in HVDC Transmiss lifferent Self and Line Commutated Current Sourced Co characteristics of different FACTS devices used in HVDC nd characteristics and comparison of Combined Compe nd working of Interline power flow controller.	nverte Transı	nission		

	Course Outcomes
CO1	Understand the different type power electronic devices and their characteristics, used for FACTS controller, Recognized different issues in ac
	power transmission, Implement of different FACTS controller for power flow control
CO2	Impart knowledge of working, control function and behavior under different loading condition of various type of Voltage Source Converters
	used in power Transmission,
CO3	Developed complete understanding of different type of Self and Line Commutated Current Sourced Converters used power flow control,
	Analyze between VSC & CSI
CO4	Explain basic objectives of using series and shunt compensator, Understand working, characteristics and control of different FACTS devices
	used in power transmission.
CO5	Understand working, characteristics and comparison of Combined Compensators used for power flow control, Explain the working and
	control of Interline power flow controller

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	FACTS concepts and General system considerations	Introduction to power semiconductor devices: Diode, GTO, MOSFET, IGBT, MOS Controlled Thyristor; Transmission interconnection; Power flow in ac system; Power flow and dynamic stability considerations; Basic of FACTS controllers: Shunt, Series, Combined and other controllers; FACTS technology; HVDC or FACTS.	8	CO1
2	Voltage Source Converters	Basic concepts, Single phase full wave bridge converter operation, Three phase full wave bridge converter, Sequence of valve conduction process in each phase leg, Transformer connections for 12 pulse operation, Three level voltage sourced converter, PWM converter	8	CO2
3	Self and Line Commutated Current Sourced Converters	Basic concepts, Three phase full wave diode rectifier, Thyristor based converter, Rectifier and inverter operation valve voltage and commutation failure, Current sourced versus voltage sourced converters	8	CO3
4	FACTS Devices	Introduction, Objectives of shunt compensation, Methods of controllable VAR Generation, Static VAR Compensators, SVC and STATCOM, Static series compensators, TSSC, TCSC and SSC	8	CO4
5	Combined Compensators	Introduction, Unified power flow controller (UPFC), Conventional power control capabilities, Real and reactive power flow control, Comparison of UPFC to series compensators, Control structure, Dynamic performance, Interline power flow controller basic operating principles, Control structure, Application considerations.	8	CO5
Referen	ce Books:			
Delhi, 20	001	i, "Understanding FACTS concepts and Technology of Flexible AC Transmission system", Sta ansmission", New Age International, 1990	andard Publi	cation, New
3.J. Arri	llaga, "High voltage dire	ect current Transmission", IET digital library, 2nd Edition, 1998		
4.E.W. F	Kimbark, "Direct Currer	t transmission", Wiley-Blackwell, 1st Edition, 1971.		

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of CO	s with PO	s and PSO	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	3	2	1	2	1	2	2	1	1		2	2	1			
CO2	3	3	2	2	2	1	1	2	3	1	1		2	3				
СО3	3	3	1	1	2		1	2	2	1			2	2				
CO4	3	3	2	2	2			2	3	1			2	2	3			
CO5	3	3	2	2	2			2	2	1	1		2	3	2			

Effective from Session: 2017	/-18						
Course Code	EE 612	Title of the Course	POWER SYSTEM OPTIMIZATION	1	0	4	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	2. Int 3. Int	roduce students to the roduce Linear program	ngineering students with knowledge of optimization tech important Quadratic programming. nming plication of population based optimization techniques in	-		ms	

	Course Outcomes
CO1	Understand the optimization techniques fundamentals
CO2	Develop quadratic programming
CO3	Analyze the performance linear programming problem
CO4	Analyze the performance of optimization algorithm
CO5	Understand the application of population based optimization techniques in power systems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of optimization techniques	Fundamentals of optimization techniques: Definition, Classification of optimization problems, Unconstrained and Constrained optimization, Optimality conditions, Classical Optimization techniques (Lamda Iteration method, Linear programming, Quadratic programming). Lamda iteration method: Brief introduction to Lamda iteration method, Formulation of the Lagrange function, Lamda iteration method to solve optimal dispatch problem.	8	CO1
2	Quadratic programming	Introduction to quadratic programming, Working principle, Sequential programming, Linear constrained optimization problem, Karush-Kuhn-Tucker conditions and its application to solve various problems, Interior point method, Lagrangian duality.	8	CO2
3	Linear programming	Examples of linear programming problem, The Simplex Method I, Fundamental theorem of linear programming, Weak and strong duality theorems, Integer programming, Network flow, Development of a linear programming model from problem description.	8	CO3
4	Particle Swarm Optimization	Fundamental principle; Velocity Updating; Advanced operators; Parameter selection; Hybrid approaches (Hybrid of GA and PSO, Hybrid of EP and PSO) - Binary, Discrete and combinatorial	8	CO4
5	Application of population based optimization techniques in power systems	Algorithms and flow chart of various optimization techniques for solving economic load dispatch and hydro-thermal scheduling problem.	8	CO5
Referen	ce Books:			
1. S. S. I	Rao, "Engineering Optir	nization", New Age International (P) Ltd, 3rd Edition, 2013.		
2. S.N.S	ivanandam & S.N. Deep	pa, "Principle of soft computing", 2nd Edition, 2011.		
3. Jizhor	ng Zhu, "Optimization o	n Power system Operation", Wiley-IEEE Press, 2nd Edition, 2015		
	Chong, Stanislaw H. Zak ion, 2011.	x, "An Introduction to Optimization", Wiley online library,		
e-Lear	rning Source:			
NPTE	L			

						C	ourse A	Articul	ation N	latrix: ((Mappiı	ng of COs	with PO	s and PSO	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	3	2	1	1	3						3	3	2	1	3		
CO2	3	3	3	2	1	1						2	3	2	2	2		
CO3	3	2	1	1	2	2	3					3	2	2	1	3		
CO4	3	2	2	2	3	3						2	3	3	1	2		
CO5	3	1	1	1	1	2	1					2	3	1	2	2		

Effective from Session: 2023-2	.4						
Course Code	EE-616	Title of the Course	SCADA SYSTEMS AND APPLICATIONS	L	Т	Р	С
Year	2nd	Semester	3rd	3	0	0	3
Pre-Requisite	None	Co-requisite	None				
Course Objectives	app • Inve	lications.	gained about PLCs and SCADA systems t dustrial communication technologies.Learn and s real life applications.				

	Course Outcomes
CO1	Understand the fundamentals of SCADA systems and its various functions.
CO2	Acquire knowledge regarding SCADA System Components and Programmable Logic Controller (PLC).Learn and discover how to set up industrial data communications networks
CO3	Increase knowledge of the key industrial communication protocols.Understand the different industrial communicationsnetworks used.And make aware of Security system in Communication.
CO4	Make aware students in the field of application. They become familiar to the SCADA system working, maintenance and desired security modes.

UnitNo.	Title of the Unit	Content of Unit	Contac tHrs.	Mappe dCO
1	Introduction	Data acquisition system, Evaluation of SCADA (Supervisory Control and Data Acquisition system), Objectives, Benefits, Functions, Monitoring & Control usingSCADA.	8	CO1
2	SCADA system components	Communication Interface, Remote terminal unit, Intelligent electronic devices, Master station, HMI (Human machine interface system),PLC(Programmable LogicControllers),Sensors.	8	CO2
3	SCADA Communicatio n	General Overview of SCADA Communications, Communications Network Options,Communication Security, Protocols in SCADA Communication, IEC 60870- 5, T101,DNP3 Protocol, Profibus, RP-570, Conitel, Modbus RTU, WebAccess HMI& SCADA features, Typical System Configurations(point to point, point to multipoint), Modes of Communication (Polled System,Interrupt system)	8	CO3
4	SCADA Applications	Automation of Electrical Distribution system, Substation control,Feeder control, EndUser load control automation by SCADA,Advantages of implementing SCADA system for electrical Distribution, Water Pumping Station,Oil & Gas Industry,WaterRecycling Plant Monitoring and Control.	8	CO4

Reference Books:

1. Stuart A. Boyer, "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications, USA, 4th edition, 2009.

2. Gordon Clarke, Deon Reynders, "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes Publications, Oxford, UK, 2004.

3. William T. Shaw, "Cyber security for SCADA systems", Penn Well Books, 2006.

4. David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	1	2	1	2	2	1	1		2	2	1			
CO2	3	3	2	2	2	1	1	2	3	1	1		2	3				
CO3	3	3	1	1	2		1	2	2	1			2	2				
CO4	3	3	2	2	2			2	3	1			2	2	3			

Effective from Session: 2017-18													
Course Code	EE-621	Title of the Course	SOFT COMPUTING IN SOLAR PV AND WIND ENERGY CONVERSION SYSTEMS	L	Т	Р	С						
Year	2 nd	Semester	3 rd	4	0	0	4						
Pre-Requisite	None	Co-requisite	None										
Course Objectives	 Use Kno Use 	e of soft computing tech owledge and concept of e of soft computing tech	electricity generation through Solar PV system. niques in electricity generation through Solar PV system. electricity generation through Wind energy conversion system niques in electricity generation through Wind energy. generation systems using soft computing	em.									

	Course Outcomes									
CO1	Know about the concept of electricity generation through Solar PV system.									
CO2	Identify and apply soft computing techniques in electricity generation through Solar PV system									
CO3	Know about concept of electricity generation through Wind energy conversion system.									
CO4	Identify and apply soft computing techniques in electricity generation through Wind energy									
CO5	Design hybrid power generation systems using soft computing.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Solar PV Energy Conversion Systems	Solar PV Energy Conversion Systems Basics of Solar PV; PV Module Performance Measurements; Balance of System and Applicable Standards; Types of PV Systems: Grid- Connected Solar PV System, Stand-Alone Solar PV System, PV-Hybrid Systems, Stand- Alone Hybrid AC Solar Power System with Generator and Battery Backup; Charge Controller; Batteries in PV Systems; Maximum Power Point Tracking Techniques.	8	CO1				
2	Soft Computing Techniques in Solar PV	Soft Computing Techniques in Solar PV MPPT Using Fuzzy Logic controller (FLC), Description and Design of FLC, Neural Networks for MPP Tracking, Algorithm for ANN Based MPPT, Neuro-Fuzzy Based MPPT Method, Fuzzy Neural Network Hybrids, Theoretical Background of ANFIS, Architecture of Adaptive NeuroFuzzy Inference System, Hybrid Learning Algorithm.	8	CO2				
3	Wind Energy	Wind Energy Conversion Systems Wind Characteristics; Wind Turbine; Fixed-Speed Wind Turbines; Variable-Speed Wind Turbines; Components of WECS; Types of Wind Turbine Generators; Power Converter Topologies for Wind Turbine Generators: Permanent Magnet Synchronous Generators, Doubly Fed Induction Generators; Grid Connection.	8	CO3				
4	Soft Computing Techniques in Wind Energy	Techniques in						
5	Hybrid Energy Systems	Hybrid Energy Systems Need for Hybrid Energy System, Architecture of Solar-Wind Hybrid System, Small Domestic Power Grid Based on Hybrid Electrical Power, Small Industrial Power System Based on Hybrid Renewable Energy, Fuzzy Logic Controller for Hybrid Power System, Design Considerations, Intelligent Controller.	8	CO5				
	nce Books:	P. Surekha, "Solar PV and Wind Energy Conversion Systems", Springer International Publishin	- Suvitzonlos	ad 2015				
		entional Energy", Wiley Eastern Ltd., 1990.	g, Switzeria	ld, 2013.				
		onal Energy Systems", Wheeler Publishing Co. Ltd., 1997.						
		enewable Energy Technologies", Narosa Publishing House, New Delhi, 1997						
		nal Energy Resources", TMH Education Private Ltd., New Delhi, 2009.						
e-Lean	rning Source:							

						C	ourse A	rticul	ation N	Aatrix: ((Mappiı	ng of CO	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	1	1	3	3	1					3	3	2			
CO2	3	2	2	2	3	3	3						2	3	1			
CO3	3	2	2	1	1	3	3	1					2	3	3			
CO4	3	2	2	2	3	3	3						2	3	2			
CO5	3	3	3	3	3	3	2						2	3	1			