

Effective from Session: 2022	2-23						
Course Code	EE201	Title of the Course	LINEAR NETWORK AND SYSTEMS	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To To To 	acknowledge the studen analyze the theoretical a know about transient sta acknowledge the studen	ts about basic laws and theorems and practical values of given circuit ate and steady state its about stability, two port network and graph theory				

	Course Outcomes
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to the analysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for
	RL, RC, and RLC circuits and analyze the characteristics of the system.
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
	Concept and AC	Kirchoff's law, Source transformation, loops analysis, node analysis, super mesh and super	8	CO1						
1	Network theorems	AC Network theorems: Superposition. Thevenin's, Norton's, Maximum power transfer								
		theorem, Reciprocity, Substitution, Compensation, Millman's and Tellegen's theorem.								
	Transient and	Transient and steady state analysis for R-L, R-C and RLC circuits, Initial value and final	8	CO2						
2	steady state	theorem Use of Laplace transform in circuit analysis, Solution of differential equations. Lap								
	analysis	lace transform of complex waveform.								
	Network Synthesis	Concept of poles and zeros, transfer function, Stability, Hurwitz Polynomial, Positive real	8	CO3						
3		function: Definitions and properties, Synthesis of RC, LC and RL Networks using Cauer and								
		Foster I and II forms								
4	Two port networks	Two port parameters, Inter-Conversion of two port Parameters, Interconnections of Two port	8	CO4						
		networks, Reciprocity and Symmetry, T-pie transformation.								
	Introduction to	Definitions: Branch, Graphs, Tree, Co- tree, Path and Loop, Concept of Planner and non	8	CO5						
5	graph theory	planner network, Incidence, Cut-set, Tie-set matrices for planer network. loop and nodal								
		analysis.								
Referen	ce Books:									
1. M.E.Van Valkenburg, Network Analysis, PHI										
2. J.A.Edminister, Electric Circuits, Schaum Series, PHI										
3. W.H.	Hayt and Jack.E.Kamm	erly, Engineering Circuit Analysis, Tata Mc Graw Hill								

4. A.Hussain, Network and Systems, Khanna publications

e-Learning Source:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	2	3	2	1		1	1	1		2	3	3	2	2		
CO2	3	2	3	3	2	2	1	2		1		1	3	3	3	2		
CO3	3	3	2	3	2	1							3	2	2	2		
CO4	3	2	2	3	1			1		1		1	3	3	2	2		
CO5	3	3	3	3	2	1		1		1			3	2	2	3		

Effective from Session: 2022	2-23						
Course Code	EE 203	Title of the Course	Electro Mechanical Energy Conversion-I	1	0	4	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives							

	Course Outcomes
CO1	Analyze magnetic circuit of rotating machines(AC and DC)
CO2	Develop the winding diagram of DC machines
CO3	Analyze the performance of DC machines
CO4	Analyze the performance of single phase transformer
CO5	Analyze the phase groupings of three phase transformers

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principle of EMEC Introduction	Introduction, Energy in electromagnetic system, Flow of energy in electromechanical devices, Energy in magnetic field and co energy, Dynamics of electromechanical systems, Singly excited systems, Doubly Excited System	8	CO1
2	DC Machines	Construction, function of commutator, simplex lap and wave windings, emf and torque equations, armature reaction and commutation, remedial measures used for reducing commutation, D.C. generator characteristics	8	CO2
3	DC Machines and Special Machines	Characteristics of dc motors,testing of dc machines,Hopkinson's test and Swinburne test,dc motor starters,speed control and braking of dc motors Special Motors :Universal motor,PM dc machines,hysteresis motor,reluctance motor and stepper motor	8	CO3
4	Electrical Transformer -I	Principle of transformer action, construction of two winding transformer, equivalent circuit and phasor diagrams of ideal and real transformers, losses in transformers, Testing: open circuit, short circuit tests and Sumpner's test, per unit system, Efficiency and voltage regulation	8	CO4
5	Electrical Transformer -II	Autotransformers:Introduction,comparison with two winding transformers,Three phase transformer:Construction,phase groupings,parallel operation,Phase transformation:Three phase to two phase,single phase and six phase ,applications of different types of transformer	8	CO5
Referen	ce Books:			
1. Ele	ectrical Machinery,	Fitzgerald, Kingsley (McGraw Hill),6 th Edition,2020		
2. Ele	ectrical Machines ar	nd their Applications, J Hind Marsh,4 th Edition,1984		
3. Fu	ndamental of Electr	ical Machines, B.R. Gupta & V. Singhal ,New Age International Pub.,2005		
4. Ele	ectric Machinery an	d Transformers, I.L.Kosow, PHI,2007		
e-Lear	rning Source:			
NPTE	L			
I				

						C	ourse A	Articul	ation N	latrix: ((Mappiı	ng of COs	s with PO	s and PSC	Ds)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	3	2	1	1	3						3	3	2	1	3		
CO2	3	3	3	2	1	1						2	3	2	2	2		
CO3	3	2	1	1	2	2	3					3	2	2	1	3		
CO4	3	2	2	2	3	3						2	3	3	1	2		
CO5	3	1	1	1	1	2	1					2	3	1	2	2		

Effective from Session: 2022	2-23						
Course Code	EE205	Title of the Course	Solid State Devices & Circuit	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To adv To and To 6 How app To 7 and osc 	analyze and designing ancement in conductivir facilitate and understan their various types' app develop and analyze the w to develop concept lications. To analyze the analyze the design consi their industrial applica illators	concept of special purpose diodes and their industrial app ty of semiconductors material. d the advancement in transistors like JFET, MOSFET, PM blications in Industries. Analyze the frequency response. performance of small signal amplifiers and large signal ampl of feedback amplifiers, their different topologies and In eir stability and their responses for different applications. derations of the active and passive filters. How to develop th tions. To understand the constructional difference and wor	licatio OS, N ifiers (nplem e varic king c	n. Und MOS, (Power a ent it pus orde of vario	erstand CMOS amplifie for vari ers of fil us types	the etc. ers). ous ters s of

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a
	switches, amplifiers etc.
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' applications in Industries. Analyze the frequency response of these devices as different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers (Power amplifiers). To understand and implement the various power amplifier in applications as transmitter and receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for various applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
		Special Diodes, LED, Zener, Varactor, Schottky barrier, photo diode, and tunnel diode: their constructions and characteristics. Bipolar Junction Transistors, biasing of BJT, equivalent	8	CO1
1	Diode and BJT	circuit, Transistor as a switch, cut off and saturation region, complete static characteristics of BJT, Darlington pair.		
	FET and MOS	Field Effect transistor: Structure and physical operation. Enhancement and depletion types MOSEFT Classification of MOS: NMOS PMOS and CMOS I/V characteristics. Biasing of	8	CO2
2		FET, Low and high frequency response of common source and common emitter configuration, Common base and Common gate cascade configurations, CC-CE cascade		
	Amplifiers	Small signal amplifiers: BJT and MOSFET, Frequency response improvement,	8	CO3
3		Classification of amplifiers: Class A, Class B, Class C amplifiers, Power amplifiers, push pull amplifiers, DC amplifier, coupling methods.		
4	Feedback	Basic concept, General feedback structure, properties of negative feedback, four basic	8	CO4
4	amplifiers	of Loop gain, stability analysis, wave shaping circuits.		
	Filters &	Active filters, Oscillators, condition for oscillation, Basic principles of sinusoidal oscillator,	8	CO5
5	Oscillators	RC oscillators, Phase Shift oscillator, Wein bridge oscillator, Hartley and Colpitt's oscillator, Crystal Oscillator, Operational amplifier: Characteristics and application		
Referen	ce Books:			

1. A.S. Sedra and K.C. Smith, "Microelectronic circuits", Oxford University Press (India). 2. B.P. Singh & R. Singh, Electronics Devices & Integrated Circuits, Pearson.

2. Millman, J. and Grabel, A., 'Microelectronics',/McGraw Hill.

3. Bell, David A,'Electronic Devices & Circuits', Prentice Hall (India) 4th Edition.

4. Nair, B. Somanathan, 'Electronics Devices & Applications', Prentice-Hall (India)

5. Neamen, Donald A., 'Electronic Circuit Analysis & Design', Tata McGraw Hill.

6. Sedra, 'Micro Electronics Circuits', Oxford University Press.

						Cour	rse Arti	culatio	n Matr	ix: (Map	oping of	COs witl	h POs an	d PSOs)				
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	2	3	3	1	1	1		2	2	2	2	2	2		
CO2	3	3	2	3	2	3	2						2	2	1	2		
CO3	3	2	3	2	2	2	1	1			1	1	2	3	2	2		
CO4	3	1	1	1	2	2	2						2	2	1	2		
CO5	3	1	1	1	2	2	2						2	3	1	3		

Effective from Session: 2016-17											
Course Code	EE207	Title of the Course	Fundamentals of EMFT	L	Т	Р	С				
Year	2 nd	Semester	3 rd	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	 To span To ma To the the constraint of the constraint of	understand the students ace and obtain the solution analyze the electrostatic realize and examine the gnetic materials recognize the concepts of Concepts of Displacement execute the analysis of Constant	about Coordinates systems. To develop ability for analysis of on of electromagnetic problems by Vector theorems and Op s problems by applying fundamental law's. magneto statics problems and response the behavior of mag of Gauss Law and Maxwell equation by investigation in real ent Current and Wave Propagation. Guided Waves and transmission lines by various parameters	of thre erators netic f time of and p	e-dimer s. fields in domain ropagat	nsional differe . To lea	nt ırn				

	Course Outcomes
CO1	Given a physical quantity, students shall be able to represent this in vector and scalar form, identify type of system, apply vector algebra, and formulate the expression in different coordinates and solve using vector theorems.
CO2	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws and Divergence theorem.
CO3	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine, analyze and evaluate the characteristics by Maxwell's Equation and Boundary Conditions
CO4	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of application of Maxwell's equation, develop various combination for Power by Pyonting Vector and explain the functions of its main components.
CO5	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve/ analyze, and modify its form

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit I	Review of scalar and vector field, Co-ordinates systems and their transformation (Cartesian, cylindrical and spherical). Vector representation of surfaces, Del operator, Gradient of Scalar, Divergence of vector and Divergence theorem, Curl of vector and Stocks Theorem, Laplacian of Scalar.	8	CO1
2	Electrostatic Fields	Coulombs law and field Intensity, Electric flux density, Gauss's law and its application, Electric potential, Electric dipole and flux lines, Energy density. Introduction to conductors, Dielectrics polarization, Continuity equation, boundary conditions, Poisson's and Laplace's equation.	8	CO2
3	Magneto-static Fields	Biot-Savarts Law, Ampere's circuit law, Magnetic flux density, Magnetic scalar and vector potentials. Force due to magnetic fields, Lorentz-force equation, Magnetic torque and moment Magnetization in material, Boundary conditions, Energy density.	8	CO3
4	Time-Varying Fields & Wave propagation	Faraday's law, displacement current, Maxwell's equation in integral and point form, Time varying potential, Time Harmonic Fields. Propagation of uniform plane waves in free space, dielectric and conductors, Pyonting theorem and power flow, Reflection of plane wave at Normal Incidence.	8	CO4
5	Guided waves & Transmission line	Introduction to guided waves, Rectangular waveguide. Transmission line parameter, Transmission line equations, Characteristic impedance, propagation constant (for lossless lines and Distortion-less lines), Input impedance, reflection coefficient, Standing wave ratio and Power. Open and short circuited lines.	8	CO5
Referen	ce Books:			
1. Eleme	ents of Electromagnetics	"M.N.O. Sadiku", oxford University Press		
2. Electr	omagnetic waves and R	adiating systems- E.C.Jorden, D.G.Balmein		
3. Engin	eering Electromagnetics	s- "W.H.Hayt & J.A. Buck", TMH.		
4. Electr	romagnetic- J.F.D.Kraus	, R.C.Keith		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	2	1							2			2		
CO2	3	3	1	1	2								1	2	1	2		
CO3	3	3	1	1	2								1	3		2		
CO4	3	3	1	1	2							1	1	2		2		
CO5	3	3	2	2	2		1	1					2	3		3		

Effective from Session: 2022-23											
Course Code	EE 202	Title of the Course	Network Lab	L	Т	Р	С				
Year	II	Semester	III	0	0	2	1				
Pre-Requisite	EE103	Co-requisite	NIL								
Course Objectives	 To acknowledge the students about basic laws & Theorems. To analyze the theoretical & practical values of given circuit. 										
Course Objectives	To know	• To know about transient state and steady state.									
	 To acknow 	wledge the students ab	out stability, two-port network and graph theory.								

Course Outcomes

CO1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of Theorems by Multimeter; contribute in related
	development
CO2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of RC, RL and RLC circuit byCRO; contribute in
	related development
CO3	Adopt, perform, analyze and implement the methods of two-port networks; contribute in related development
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for
	RL, RC, and RLC circuits and analyze the characteristics of the system.

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO						
1	To verify Superposition theorem for dc network	2	1						
2	To verify Thevenin's theorem for dc network	2	1						
3	To verify Tellegen's theorem for dc network	2	1						
4	To verify Maximum power transfer theorem for dc network	2	1						
5	To study transient response of RC series circuit	2	2,4						
6	To study frequency response of RLC series circuit	2	2,4						
7	To determine the h-parameter of a port resistive network23								
8	To determine the z-parameter of a port resistive network23								
9	To determine the ABCD-parameter of a port resistive network	2	3						
10	To study transient response of RLC series circuit	2	2,4						
Referenc	e Books:								
1. M. E. V	an Valkenburg, "Network Analysis", Chaukhamba Auriyantaliya Publication, 3 rd Edition, 2010.								
2. J. A. Ec	Iminister, "Electric Circuits", Schaum Outline Series, McGraw Hill Education; 5th edition, 2017.								
3. W. H. I	Hayt and Jack E. Kammerly, "Engineering Circuit Analysis", McGraw Hill Education; Eighth edition, 2013.								
4. A. Hus	sain, "Network and Systems", Khanna Book Publishing Co. (P) Ltd.; Second edition, 2019.								
e-Lear	ning Source:								

PO-PSO Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PO1 PSO4 CO CO1 CO2 CO3 **CO4**

Effective from Session: 2022-23											
Course Code	EE 204	Title of the Course	Electromechanical Energy Conversion I Lab	L	Т	Р	С				
Year	II	Semester	III	0	0	2	1				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	 To Kn Ap Ap Ev 	understand the ope owledge of three pl ply the knowledge ply the knowledge aluate performance	rating principle of 3 point and 4 point starters and nase transformers connections and protection syst to control the speed of DC motors to obtain the magnetization characteristics of DC of DC machines on the basis of external character	l its a em gene eristic	pplica	tions					

	Course Outcomes									
CO1	Analyze and implement different starters for starting DC motors									
CO2	Analyse and apply the different speed control methods for DC motors									
CO3	Analyse, test and determine the performance of single phase transformers									
CO4	Apply the knowledge practically to determine the performance of DC machines under no load and loading condition									

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study three point starter and four point starter.	2	1
2		Open Circuit Characteristic of DC Shunt Generator.	2	4
3		Study of Three Phase Transformer.	2	3
4		Armature and Field control of a compound motor	2	2
5		Speed Control of a DC shunt motor by armature and field control.	2	2
6		To obtain load Characteristic of DC Series Generator.	2	4
7		Polarity test of Single Phase Transformer	2	3
		Parallel operation of D.C Generators.		
8			2	4
Referen	ce Books:			
1. V.D	eltoro, "Principle of	f Electrical Engg." PHI, 2009		
2. M.A	Mallick, Dr. I. Asł	nraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
3. A. H	Iussain, "Basic Elec	etrical Engg" Dhanpat Rai & sons, 2007		
4. I J N	agrath,"Basic Electric	cal Engg", TMH, 2010.		
e-Lear	ning Source:			
IIT -R	oorkee Virtual Labs(h	ttps://www.vlab.co.in/participating-institute-iit-roorkee)		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО																		
CO1	1	2	3									3	1	2	3			
CO2	1	2	3									3	1		3			
CO3	1	2	3									3	1		3			
CO4	1	2	3									3	1		3			

Effective from Session: 2016-17												
Course Code	EE 206	Title of the Course	SSDC Lab	L	Т	Р	С					
Year	Π	Semester	Ш	0	0	2	1					
Pre-Requisite		Co-requisite										
Course Objectives	To develop semiconducto	To develop knowledge and application of fundamental electronic circuits and physical electronics of statistic devices, including design, construction and testing of experimental electronic circuits.										

	Course Outcomes
CO1	To designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement
	in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switch, amplifiers
	etc
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' of applications in
	Industries. Analyze the frequency response of these devices as
	different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	Developing the concept of feedback amplifiers, their different topologies and implement it for
	various applications. To analyze their stability and their responses for different applications.
CO4	To analyze the design considerations of the active and passive filters. How to develop the various
	orders of filters and their industrial applications. To understand the constructional difference and
	working of various types of oscillators. How the oscillators can be developed and their use in
	industries.

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO				
1		Study of Clipping circuit and Clamping circuit	2	3				
2		Study of LED (Red, Green, Yellow)	2	1				
3		Study of single stage RC coupled transistor amplifier	2	2				
4		Study of Emitter follower circuit and determine and determine a) Maximum signal handling capacity at 1 KHz at no load b) Plot frequency response at no load	2	1				
5		Study of Wein's Bridge oscillatora) Determine the frequency of oscillationb) Determine the value of unknown capacitance C_x	2	4				
6		Application of operation amplifier as Inverting, Non- Inverting, and unit gain amplifier(buffer).	2	3				
7		Application of an operational amplifier as a differentiator and integrator. Plot frequency response	2	3				
8		Study of MOSFET, plot V-I characteristics of N-MOS and P-MOS, find r _d ,g _m and draw equivalent circuit.	2	2				
9		Study of Clipping MOSFET as an amplifier (CS)	2	2				
10		Study of Differential Amplifier using BJT	2	3				
Referen	ce Books:							
1. VBell	, David A/ "Electronic	Devices & Circuits"/Prentice Hall (India) 4th Edition.						
2. A.S. S	Sedra and K.C. Smith, "	Microelectronic circuits", Oxford University Press (India).						
3. Millr	3. Millman, J. and Grabel, A./" Microelectronics"/McGraw Hill.							
4. Neam	en, Donald A./ "Electro	nic Circuit Analysis & Design"/Tata McGraw Hill.						
e-Lear	ning Source:							

Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PO4 PSO1 PSO2 PSO PO1 PO2 PO3 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO3 PSO4 CO 3 2 2 2 2 3 3 1 3 1 CO1 3 2 3 2 2 3 1 1 1 CO2 3 1 1 3 2 2 3 1 CO3 **CO4** 3 1 1 3 2 2 3 1

Effective from Session: 2016-17									
Course Code	EE 208	Title of the Course	ELECTRICAL WORKSHOP LAB	L	Т	Р	С		
Year	Π	Semester	III	0	0	2	1		
Pre-Requisite		Co-requisite							
Course Objectives	 To To To To 	understand and experim understand and experim understand and experim understand Printed Circ	ent with the measurement of Electronic Circuits and system ent with the Semiconductor devices and integrated circuits. ent with Transformer assembly. uit Board and Preparation of PCB.	s.					

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of components of Electronic Circuits and systems.
CO2	Adopt, perform, analyze and implement the concepts of Transformer, Chokes, Potentiometer.
CO3	Adopt, perform, analyze the Semiconductor devices and integrated circuits.
CO4	Adopt, perform, and implement the designing of Printed Circuit Board (PCB) and related development

Exp. No.	Title of the Unit	Content of Experiment	Contac t Hrs.	Mapped CO				
1		2	1					
2		Study of Transformer, Chokes, Potentiometer, Switches and Rectifiers.						
3	3 To study Semiconductor devices and integrated circuits: different rating and packages. Power Semiconductor devices and Heat Sinks.							
4	To perform winding of Transformer, assembly of core and complete the transformer and also explain the various materials involved in it.							
5		Preparation of Printed Circuit Board (PCB) and perform drilling on the PCB.	2	4				
6		To perform soldering of components on the PCB and assembled circuit.	2	2				
7		To perform Assembly of Electronic Circuits and Systems- Soldering and Communication Cable jointing. Bread Board Assembly of a regulated d.c. power supply.	2	3				
8		Assembling of an unregulated DC power supply in a steel cabinet along with complete wiring.	2	4				
9		Mini project (I): Stair case wiring.	2	4				
10		Mini project (II): Core type transformer winding.	2	4				
Referen	ce Books:							
1.	R.P Singh Electrical	Workshop, I.K. International Publishing House Pvt. Limited, 2005						
2.	A Textbook of Electri	cal Workshop Practices ,S.K. Kataria & Sons: 2019						
3.	P. S. Bimbhra Electric	cal Machinery : Dhanpat Rai & sons, 2007						
4.	I J Nagrath,"Basic Ele	ectrical Engg", TMH, 2010.						
e-Lear	ning Source:							
	-							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2016-17										
Course Code	EE209	E209 Title of the Course Electrical Measurement & Measuring Instruments L T								
Year	2 nd	Semester	4 3 1							
Pre-Requisite	None	Co-requisite	None							
Course Objectives	To understand To understand energy meter To understand To understand To understand	d the measurement syste d three phase power mea and instrument transfor d measurement of low, r d use of ac potentiomete d digital measurement of	em, measurement methods and errors, measurement of electr asurement; working of thermocouple, electrostatic and rectif mer medium and high resistances, use of ac bridges and Q meter or; measurement of speed, frequency and power factor f electrical quantities; CRO and its application	ical qu ier typ	antities be instru	ments;				

	Course Outcomes
CO1	Adopt the methods of measurement, investigate the errors in measurement, analyze and rectify; perform analog measurement of electrical
	quantities; contribute in related development
CO2	Perform three phase power measurement; use thermocouple, electrostatic, rectifier type instruments, energy meter and instrument transformer
	for measurement; identify errors in energy meter and adopt remedies; adopt extension of instrument range using instrument transformer;
	contribute in related development
CO3	To perform measurement of low, medium and high resistances; perform measurement of inductance and capacitance using ac brides; adopt use
	of Q meter, contribute in related development
CO4	To adopt use of ac potentiometer; perform measurement of speed, frequency and power factor; contribute in related development
CO5	To perform digital measurement of electrical quantities; adopt application of CRO, dual trace and dual beam oscilloscopes; contribute in related
	development

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit I	Philosophy of measurement: Methods of measurement, measurement system, classification of instrument system, characteristics of instrument and measurement system, error in measurement and its analysis. Analog measurement of electrical quantities: PMMC type Instruments, Moving Iron type Instruments, Electrodynamics type Instruments' three phase wattmeter, error and remedies in wattmeter.	8	CO1
2	Unit II	Power measurements in three phase system, Thermocouple, electrostatic and rectified type ammeter and voltmeter, Energy meter, error and remedies in energy meter. Instrument transformer and their application in the extension of instruments range.	8	CO2
3	Unit III	Measurement of parameter: Different methods of measurement of low, medium and high resistances, measurement of inductance and capacitance with the help of AC bridges, Q-meter.	8	CO3
4	Unit IV	AC Potentiometer: Polar type and co-ordinate type AC potentiometer, application of AC potentiometers in electrical measurement. Measurement of speed, frequency and power factor.	8	CO4
5	Unit V	Digital measurement of electrical quantities: concept of digital measurement, block diagram, study of digital voltmeter, frequency meter, Cathode ray oscilloscope: Basic CRO circuit (block diagram), cathode ray tube (CRT), and its components, application of CRO in measurement, Lissajous pattern, Dual trace and dual beam oscilloscopes.	8	CO5
Referen	ce Books:			
1. E.W.	Golding & F.C. Widdis,	"Electrical measurement & Measuring Instrument", A. W. Wheeler & Co. Pvt. Ltd. India.		
2. A.K. S	Sawhney, "Electrical &l	Electronics Measurement & Instrument", Dhanpat Rai &Sons, India.		
3. M.B.	Stout ,"Basic Electrical	Measurement" Prentice hall of India, India.		
4. Forest	t K. Harries," Electrical	Measurement", Willey Eastern Pvt. Ltd. India.		
-	• 0			

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	1	2	3							2	2	2		3		
CO2	3	3	1	2	3							2	2			3		
CO3	3	1	1		3							2	2			3		
CO4	3	1	1		3							2	2			3		
CO5	3	1	1		3							2			2	3		

Effective from Session: 2022-23										
Course Code	EE 211	Title of the Course	Electro Mechanical Energy Conversion-II	1	0	4	С			
Year	2 nd	Semester	4 th	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	 Kn Ide An To Kn 	owledge of principle ntify different ac mot alyze different ac mad evaluate the performa owledge of parallel op	of operation of three phase ac motors ors on the basis of characteristics chines ance of ac machines peration of ac generators							

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
CO5	Evaluate the performance of synchronous machines

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Three phase Induction Machine I	Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations, Torque- slip characteristics, no load & blocked rotor tests, efficiency, Induction generator & its applications.	8	CO1
2	Three phase Induction Machine- II	Starting, Deep bar and double cage rotors, Cogging & Crawling, Speed Control (with and without EMF injection in rotor circuit).	8	CO2
3	Single phase Induction Motor	Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods, repulsion motor. AC Commutator Motors: Universal motor, single phase a.c.series compensated motor, stepper motors.	8	CO3
4	Synchronous Machine I	Constructional features, Armature winding, EMF Equation, Winding coefficients, equivalent circuit and Phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque coefficient.	8	CO4
5	Synchronous Machine II	Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads, V- Curves, Hunting & damping, synchronous condenser.	8	CO5
Referen	ce Books:			
1. D.P	. Kothari & I.J. Nagra	ath, 'Electric Machines', Tata Mc Graw Hill,2004.		
2. Ash				
3. Fitz				
4. P.S	Bimbhra, 'Electrical	Machinery', Khanna Publishers,2003		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	2	2	1								3	3	2	1	3		
CO2	3	2	3	1								2	3	2	2	2		
CO3	3	1	1	1								3	2	2	1	3		
CO4	3	2	2	2								2	3	3	1	2		
CO5	3	2	1	1			1					2	3	1	2	2		

Effective from Session: 2022	2-23						
Course Code	EE213	Title of the Course	Numerical Analysis and Applications	L	Т	Р	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To p nume To s comp To s form To c interpote To fa 	rovide suitable and effe erical results of the prob olve problems in the f outing of numerical resu olve complex mathema ulation of mathematical leal with various topic polation and regression dary value problems, an accilitate numerical comp	ctive methods called Numerical Methods, for obtaining ap lems. Field of applied mathematics, theoretical physics and eng lts using certain raw data. atical problems using only simple arithmetic operations. models of physical situations that can be solved with arithm s like finding roots of equations, solving systems of lin analysis, numerical integration & differentiation, solution ad solution of matrix problems. puting.	proxin ineerin The a letic op ear alg of dif	nate rep ng whic approac peratior gebraic ferentia	oresenta ch requ ch invol ns. equational equational	tive ires lves ons, ion,

CO1	Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
CO2	Describing and understanding of the several errors and approximation in numerical methods.
CO3	The explaining and understanding of the several available methods to solve the simultaneous equations by modern IT tools.
CO4	To solve problems in the field of applied mathematics, theoretical physics and engineering which requires computing of numerical results
	using certain raw data by using modern tools and follow the ethical rules.
CO5	To deal, communicate and environment sustainability with various topics like finding roots of equations, solving systems of linear algebraic
	equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value
	problems, and solution of matrix problems in the field of Engineering and modern life.

Unit No	Title of the Unit	Content of Unit	Contact Hrs	Mapped CO
1	Errors and approximations	Error definitions, accuracy and precision, round off and truncation errors Roots of equations - Solution of Algebraic and Transcendental equations, Newton- Raphson method, Secant method, Bisection method, Fixed Iteration method, Regula-Falsi method. Finite differences - Forward differences, Back ward differences, Central differences.	8	CO1
2	Solutions of simultaneous linear algebraic equations	Gauss elimination method, Gauss-Jordan method, Matrix inversion method, LU decomposition methods, iterative method: Gauss-Seidel, Jacobi's method	8	CO2
3	Curve fitting	Introduction, method of least square, fitting of a straight line by method of least square, change of origin and scale, normal equations for different form of curve. Interpolation with equal and unequal intervals: Newton's Gregory forward interpolation, Newton's Gregory backward interpolation, Newton's divided difference interpolation, Lagrange's interpolation	8	CO3
4	Numerical differentiation	Newton's Gregory forward interpolation formula to get derivatives, Newton's Gregory backward interpolation formula to get derivatives, Newton's divided difference interpolation formula to get derivatives, Lagrange's interpolation formula to get derivatives Numerical integration: Newton-cotes quadrature formula, Trapezoidal rule, Simpson's rule, Boole's rule, Weddle's rule	8	CO4
5	Numerical solutions for ordinary differential equations	Initial and Boundary value problems, Picard method of successes approximation, Taylor's series method, Euler's method, Modified Euler method, Runge-Kutta Method (First, second, third and fourth order)	8	CO5
Referen	ce Books:			
1. Josef S	Stoer and R. Bulirsch, "	Introduction to Numerical Analysis" Springer Science & Business Media, ISBN 978-1-47575-59	2-3, Third Ed	dition, 2013.
2.Lloyd	N. Trefethen and Dav	id Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISI	3N: 978-0-8	98713-61-9,

Illustrated edition, 1997.

3.C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2		1									1		1	2		
CO2	3	2					1							2		2		
CO3	3	1										2		2		3		
CO4	3	2										1	2		2	2		
CO5	3	2					1							3		2		

Effective from Session: 2016-17											
Course Code	EE217	Title of the Course	Signal System Analysis	L	Т	Р	С				
Year	2 nd	Semester	4 th	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	• Der										
Course Objectives	• Use	es of transform analysis	and convolution, to analyze and predict the behavior of line	ar time	invaria	ant syste	ems				

	Course Outcomes
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems.
CO2	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time
	system.
CO3	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain
CO5	Analyze the discrete time signals and system using DTFT. DFT and Z

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Formalizing Signals	Continuous-time/discrete-time, Periodic/non-periodic, even/odd, energy/power, deterministic/ random, Unit step, Unit ramp, Unit impulse, Sinusoid, complex exponential signals. Signal Properties: Periodicity, absolute integrability, determinism and stochastic character. System properties: Linearity, additivity and homogeneity, Scaling, shift invariance, causality. Continuous and discrete time linear shift invariance system: The impulse response and step response, convolution, input-output behavior.	8	CO1						
2	8	CO2								
3	Discrete Fourier Transform	Discrete time Fourier transform (DTFT), Discrete Fourier transform (DFT), Parsevals theorem, properties convergence, Sampling theorem and its implication, Reconstruction: Ideal interpolator, zero order hold, aliasing and its effect, Relation between continuous and discrete time system.	8	CO3						
4	Laplace Transform	Laplace Transform for continuous time signals and systems: The notion of Eigen function of LSI system, region of convergence, system functions, poles and zeros of system functions and signals Convolution theorem, Laplace domain analysis, Waveform synthesis, solution to differential equation and system behavior.	8	CO4						
5	Z-Transform Analysis	Z Transform for discrete time signal and system, Eigen function, region of convergence ,system function, poles and zeroes of system sequences, Z domain analysis, solution of difference equation, pulse transfer function	8	CO5						
Referen	ce Books:									
1. S.H. S	Saeed, Faizan Arif Khan	, "Basic System Analysis" 2nd Edition, Katson Publishing Delhi.								
2. A.V. 0	Oppenhiem, A.S. Wilsk	y and I.T. young, "Signals & Systems", Prentice Hall, 1983								
3. M E V	/an-Valkenberg; "Netw	ork Analysis", Prentice Hall of India.								
4. B. P. 1	4. B. P. Lathi, "Linear Systems & Signals" Oxford University Press, 2008.									
5. I. J. N	agrath, S.N. Saran, R. R	anjan and S. Kumar, "Signals and Systems", Tata Mc. Graw Hill								
e-Lear	ning Source:									

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3		2		1			1	1		1	2			3		
CO2	3	3	2	2					1	1		1		2		2		
CO3	3	3	2	2		1			1	1		1			2	2		
CO4	3	3	2	2		1			1	1		1		2		2		
CO5	3	3	2	2		1	1		1	1		1		2		2		

Effective from Session: 2016	5-17						
Course Code	EE221 (DE-I)	Title of the Course	Electrical Engineering Materials	L	Т	Р	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To To main To poin To To To pro 	apply the knowledge of understand the impac- nufacturability and susta know the properties of nt of view. realize the potential of learn latest techniques, cesses.	material science engineering. et of realistic constraints such as economic, environme inability. conducting, insulating, dielectric and magnetic materials from semiconducting devices with their application. skills, and modern engineering tools necessary for electrica	ental, a om elec l engir	safety, ctrical e neering	reliabil engineer fabricat	lity, ring tion

	Course Outcomes
CO1	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO2	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO3	To provide students with a moderate level understanding of the physics behind the semiconductors.
CO4	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO5	An understanding of the electrical engineering material science essential for them to work in different fabrication based industries and also
	motivate them to do innovative characterization based research while going for higher studies and also to work in R & D with scientific
	enthusiasm

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Classification of Materials	Metals and alloys, polymers, conducting materials, characteristic of good conductors, commonly used conducting materials, smart materials, fuel cell, super alloys, memory alloys, degradation of materials,	8	CO1						
2	Dielectrics, Insulating and Conducting Materials	Dielectric strength, factor affecting strength, polarization, dielectric loss, Types of capacitor, Insulating & Dielectric Materials - Properties of insulating materials, classification of insulating materials, Piezoelectricity, Ferro electricity, Principle and Applications of Optical Fiber, Material for OH lines and UG cables, Fuse, soldering, Effect of temperature on transformer oil	8	CO2						
3	Semiconductors and their Applications	Types of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices, photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD.	8	CO3						
4	Magnetic Materials and their Applications	Basic concepts and definitions, origin of magnetism, dia, Para, Ferro, anti Ferro, ferri magnetism, Curie Temperature, Hysteresis and its significance, soft and hard magnetic materials, ferrites, silicon steel, their properties and uses, magnetic resistance.	8	CO4						
5	Fabrication and Characterization of Materials	Planar process, lithography, etching, spin coating, sputtering, CVD, carbon nanotube, nanowires (synthesis, properties and applications), Material characterization techniques such as scanning electron microscopy, transmission electron microscopy, Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry.	8	CO5						
Referen	ce Books:									
1. A. J. I	Dekker, Electrical Engin	eering Materials, PHI.								
2. C.S In	dulkar & S.Thiruvegada	a, An introduction electrical Engg Materials, S. Chand & Co.								
3. S.O K	asap, Principles of Elec	tronic Materials & Devices, TMH								
4. L.V A	4. L.V Azaroff, Introduction to Solids, Mc Grow Hill Company									
5. Charles Kittle, Quantum theory of Solids, John Wiley and Sons										

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	2		1									2	3		1		
CO2	3	2											3	3		1		
CO3	3	2		2								3	1	3		1		
CO4	2	1										3	2	2		2		
CO5	3		3									1	3	3				

Effective from Session: 2	2023-24						
Course Code	EE224 (DE-I)	Title of the Course	Illumination Engineering	L	Т	Р	С
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	To und To und To und To und To und To und To und	erstand the basics of Ille erstand the Illumination erstand Indoor Lighting erstand the Outdoor Lig erstand the Modern Tre	Imination Engineering Systems and Indoor Illumination Design hting nds in Illumination				

Course Outcomes

CO1	Understanding of Basics of Illumination Engineering
CO2	Understanding of Illumination Systems and its deign considerations
CO3	Understanding and implementation capability of indoor illumination design and scheme for residential, educational, medical and commercial
	installations
CO4	Understanding and implementation capability of outdoor illumination design and scheme
CO5	Understanding and implementation capability of Modern trends in Illumination such as LED, Organic Lighting System, Laser and Optic Fiber

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Illumination Engineering Basics	Introduction- Necessity of illumination, Physical processes employed in the artificial sources. Eye and Vision, Laws of illumination, Light: Production, physics of generation, Photometry: Properties, quantification and measurement, Glare, Effect of Glare, Glare Indices, Color rendering index	8	CO1						
2	Illumination Systems	Luminaries: Types, Design consideration, Standard (IEC598), Lighting fixtures, Construction and working of various types of Lamps, Electric control of Light sources using Ballast	8	CO2						
Indoor LightingZonal cavity method for general lighting design, Determination for zonal cavities and different shaped ceilings using COU (Coefficient of Utilization), Beam angles and polar diagram, Factors to be considered for design of indoor illumination scheme. Indoor Illumination Design: Residential, Educational institute, Hospitals and commercial Installation.8										
4	4 Outdoor Lighting Factors consideration on designing of outdoor illumination scheme, Sports lighting, Flood lighting, Road lighting, Lighting for advertisement/Holding, Lighting calculation, Lighting applications.									
5	Modern Trends in Illumination	LED Luminary designs, Intelligent LED fixtures, Natural lighting conductor, Organic lighting system, Laser characteristics, Features and applications, Optical fiber constructionas light guide, Features and applications.	8	CO5						
Referen	ce Books:									
1. D.C. I	Pritchard Lighting, Rout	ledge, 2018								
2. H.Par	tab, "Art and Science of	Electrical Energy" Dhanpat Rai & Sons, 2017								
3. Craig	3. Craig Di Louie, "Advanced Lighting Controls: Energy Savings, Productivity, Technology and Applications", CRC Press, 2017									
4. Kao Chen, "Energy Management in Illuminating Systems", Carlsons Consulting Engineers, San Diego, California, USA, CRC Press, 2009										
5. Mark	5. Mark Stanley Rea, "IESNA Lighting Handbook", Illuminating Engineering Society of North America, 2000									
6. S. M.	Chaudhari, "Illuminatio	n Engineering", Tech Knowledge Publications, 2019								
e-Learn	ing Source:									

		Course Articulation Matrix: (Mapping of COs with POs and																
		PSOs)																
PO- PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO 1	3	3	1	2	3							2	3	2				
CO 2	3	3	1	2	3							2	3	2				
CO 3	3	1	1		3							2	3					
CO 4	3	1	1		3							2	3					
CO 5	3	1	1		3							2	3					

Effective from Session: 2016-17												
Course Code	EE 210	Title of the Course	Electrical Measurement Lab	L	Т	Р	С					
Year	II	Semester	IV	0	0	2	1					
Pre-Requisite		Co-requisite										
Course Objectives	 To To To To 	understand and experim understand and experim understand and experim understand and experim	ent with the measurement of electrical quantity by DC Bridg ent with the measurement of electrical quantity by AC Bridg ent with the calibration of voltmeter ent with the calibration of ammeter	ie ie								

	Course Outcomes											
CO1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by DC Bridge; contribute in related											
	development											
CO2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by AC Bridge; contribute in related development											
CO3	Adopt, perform, analyze and implement the methods of calibration of voltmeter; contribute in related development											
CO4	Adopt, perform, analyze and implement the methods of calibration of ammeter; contribute in related development											

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO								
1	1 Measurement of Low Resistance by Kelvin's Double Bridge 2 Measurement of Self-Inductance by Maxwell's Bridge											
2		Measurement of Self-Inductance by Maxwell's Bridge	2	2								
3	3 Measurement of Self-Inductance by Hay's Bridge 2 2											
4 Measurement of Capacitance by Schering's Bridge 2												
5	2	2										
6	6 Measurement of Frequency by Wein's Bridge											
7	7 Calibration of Voltmeter											
8 Calibration of Ammeter 2 4												
Referen	ce Books:											
1. V.Del	ltoro, "Principle of Elect	trical Engg." PHI, 2009										
2. M.A I	Mallick, Dr. I. Ashraf, "	Fundamental of Electrical Engg," CBS Publishers, 2010.										
3. A. Hu	issain, "Basic Electrical	Engg" Dhanpat Rai & sons, 2007										
4. I J Na	grath,"Basic Electrical	Engg", TMH, 2010.										
e-Leaı	rning Source:											

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2022	2-23									
Course Code	EE 212	Title of the Course	Electromechanical Energy Conversion II Lab	L	Т	Р	С			
Year	II	Semester	IV	0	0	2	1			
Pre-Requisite	None	Co-requisite	None							
	• To understand the operating principle of DOL and Star Delta Starters									
Course Objectives	• Kr	• Knowledge of single phase and three phase squirrel cage / slip ring induction motor								
Course Objectives	• Ap	ply the knowledge	to control the speed of three phase AC motors							
	• Ev	aluate performance	of AC machines on the basis of external charact	eristi	с					

	Course Outcomes
CO1	Analyze and implement different starters for starting AC motors
CO2	Analyse and apply the different speed control methods for AC motors
CO3	Analyse, test and determine the performance of single phase induction motor
CO4	Apply the knowledge practically to determine the performance of AC machines under no load and loading condition

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study DOL starter and star delta starter.	2	1
2		To study of slip ring induction motor.	2	1
3		To study of single phase capacitor start induction motor and observe (a) effect of capacitor on starting and running (b) reversal of direction of induction motor	2	3
4		To perform no load load test and block rotor test on a single phase inductionmotor	2	2
5		To study of synchronization of an alternator by two bright and one dark lamp method	2	4
6		To study speed control of 3 phase SCIM by voltage variation method	2	2
7		2	3	
8		Parallel operation of AC Generators.	2	4
Referen	ce Books:			
1. V.D	eltoro, "Principle of	f Electrical Engg." PHI, 2009		
2. M.A	Mallick, Dr. I. Asł	rraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
3. A. H	lussain, "Basic Elec	trical Engg" Dhanpat Rai & sons, 2007		
4. I J N	agrath,"Basic Electric	cal Engg", TMH, 2010.		
e-Lear	ning Source:			
IIT -R	oorkee Virtual Labs(h	ttps://www.vlab.co.in/participating-institute-iit-roorkee)		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	2	3									3	1	2	3			
CO2	1	2	3									3	1		3			
CO3	1	2	3									3	1		3			
CO4	1	2	3									3	1		3			

Effective from Session	. 2022-23											
Course Code	EE 214	Title of the Course	Numerical Analysis and Applications Lab	L	Т	Р	C					
Year	II	Semester	IV	0	0	2	1					
Pre-Requisite		Co-requisite										
	 To provide suita results of the pro- To solve proble of numerical res 	able and effective metho oblems. ems in the field of app sults using certain raw d	ods called Numerical Methods, for obtaining approximate re plied mathematics, theoretical physics and engineering whata.	present	tative n quires c	umerica computi	al ing					
 Course Objectives To solve complex mathematical problems using only simple arithmetic operations. The approach involves formu of mathematical models of physical situations that can be solved with arithmetic operations. To deal with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, bound 												

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of simulation and programming of roots of equation by MATLAB; contribute in related development
CO2	Adopt, perform, analyze and implement the methods of simulation and programming of linear algebraic equation byMATLAB; contribute in related development
CO3	Adopt, perform, analyze and implement the methods of simulation and programming of numerical integration and differentiation by MATLAB; contribute in related development
CO4	Adopt, perform, analyze and implement the methods of simulation, programming and plot of equation by MATLAB; contribute in related development

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	Study the overview of MATLAB and basic mathematical operations.	2	1
2	Find the determinants and inverse of given matrix [A] using MALAB.	2	1
3	Solve the linear algebraic equations by using MATLAB. 5x=3y-2z+10; 8y+4z=3x+20; 2x+4y-9z=9	2	2
4	Find the Eigen value & Eigen vectors of a given matrix A by using MATLAB.5x- 3y+2z=10; -x+8y+4z=20; 2x+4y-9z=9	2	2
5	Plot the raw data to do fit linear curve and display the equation by using MATLAB. $X = [5 \ 10 \ 20 \ 50 \ 100] Y = [15 \ 33 \ 53 \ 140 \ 301]$	2	2,4
6	Solve the transcendental equation $Sin x=e^{X}-5$ & plot it by using MATLAB.	2	2,4
7	Evaluate function by Simpson's 1/3 rule using MATLAB.	2	3
8	Evaluate function by Simpson's 3/8 rule using MATLAB.	2	3
9	Find the roots & plot the error of the given $f(x) = x^3 - x - 1$ by Bisection method using MATLAB.	2	2,4
10	Find the root of the following equation's using Gauss Seidel Method.20x+y- 2z=17; 3x+20y-z=18; 2x-3y+20z=25	2	2
Referenc	e Books:		
1. Josef St 2013	toer and R. Bulirsch, "Introduction to Numerical Analysis" Springer Science & amp; Business Media, ISBN 978-1-47575	-592- 3, Thi	d Edition,

2. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.

3. C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

https://drive.google.com/drive/folders/1i52ieww0iq_YIYw7 7lX4q6RGHpP97B_u?usp=sharing

PO-PSO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3	2									1	3	1	3
CO2	1	3	3	1	1								1	3	1	3
CO3	2	1	3	3	3	1			1		1	1	2	3	2	2
CO4	3	2	1	1	3	1		2	1		1	1	2	3	2	2

Effective from Session	: 2022-25						
Course Code	EE 216	Title of the Course	Electrical Simulation Lab	L	Т	Р	С
Year	II	Semester	IV	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	 Understanding S electrical engine Hands-on MAT MATLAB envir Circuit Analysis capacitors, indu frequency doma 	Simulation Techniques: eering. 'LAB Skills: Develop pronment, using built-in s and Design: Apply cir ctors, and operational a un analysis.	Students should grasp the fundamental concepts of simulation roficiency in using MATLAB for electrical simulations, incl functions, creating scripts, and utilizing MATLAB's graphic cuit analysis principles to solve complex electrical circuits in mplifiers. Understand circuit behaviors, transient and steady	on tech uding u al capa nvolvir '-state 1	nniques underst abilities ng resist respons	used in anding t tors, es, and	the

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of simulation techniques used in electrical engineering.by MATLAB.
CO2	Adopt, perform, analyze and implement the methods and develop proficiency in using MATLAB for electrical simulations, including understanding the MATLAB environment, using built-in functions, creating scripts byMATLAB
CO3	Adopt, perform, analyze and implement the methods of simulation and programming of numerical integration and differentiation by MATLAB; contribute in related development
CO4	Adopt, perform, analyze and implement the methods of simulation, and plot of electrical circuits by MATLAB; contribute in related development

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	To Study the elements, Components & blocks used in MATLAB/Simulink.	2	1
2	To realize an active circuit using MATLAB Simulink and obtain current and voltage at each branches.	2	1
3	To realize a half wave rectifier circuit using MATLAB/Simulink.	2	2
4	To realize a full wave rectifier circuit using MATLAB/Simulink.	2	2
5	To verify Thevenin's theorem using MATLAB/Simulink.	2	2,4
6	To verify Norton's theorem using MATLAB/Simulink.	2	2,4
7	To verify Maximum power transfer theorem using MATLAB/Simulink.	2	3
8	To verify Superposition theorem using MATLAB/Simulink.	2	3
9	To study frequency response of series RLC circuit using MATLAB/Simulink.	2	2,4
10	Development and simulation of program using MATLAB/Simulink.	2	2
D. C			

Reference Books:

Effective from

1. Josef Stoer and R. Bulirsch, "Introduction to Numerical Analysis" Springer Science & amp; Business Media, ISBN 978-1-47575-592-3, Third Edition, 2013.

2. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.

3. C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

https://drive.google.com/drive/folders/1i52ieww0iq_YIYw7 7lX4q6RGHpP97B_u?usp=sharing

-																
PO-PSO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3	2									1	3	1	3
CO2	1	3	3	1	1								1	3	1	3
CO3	2	1	3	3	3	1			1		1	1	2	3	2	2
CO4	3	2	1	1	3	1		2	1		1	1	2	3	2	2